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This book provides an original graph theoretical approach to the fundamental properties
of wireless mobile ad-hoc networks. This approach is combined with a realistic radio
model for physical links between nodes to produce new insights into network
characteristics like connectivity, degree distribution, hopcount, interference and capacity.

This book clearly demonstrates how the Medium Access Control protocols impose a
limit on the level of interference in ad-hoc networks. It has been shown that interference
is upper bounded, and a new accurate method for the estimation of interference power
statistics in ad-hoc and sensor networks is introduced here. Furthermore, this volume
shows how multi-hop traffic affects the capacity of the network. In multi-hop and ad-hoc
networks there is a trade-off between the network size and the maximum input bit rate
possible per node. Large ad-hoc or sensor networks, consisting of thousands of nodes,
can only support low-bit-rate applications. 

This work provides valuable directives for designing ad-hoc networks and sensor
networks. It will not only be of interest to the academic community, but also to the
engineers who roll out ad-hoc and sensor networks in practice. 
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Preface

Wireless mobile ad-hoc networks are formed by mobile devices that set up a
possibly short-lived network for communication needs of the moment.

Ad-hoc networks are decentralized, self-organizing networks capable of
forming a communication network without relying on any fixed infrastruc-
ture. Each node in an ad-hoc network is equipped with a radio transmitter
and receiver which allows it to communicate with other nodes over wireless
channels. All nodes can function, if needed, as relay stations for data packets
to be routed to their final destination. In other words, ad-hoc networks al-
low for multi-hop transmission of data between nodes outside the direct radio
reach of each other.

Ad-hoc networks have distinct advantages over traditional communica-
tion networks. For example, ad-hoc networks can be more economical as they
eliminate fixed infrastructure costs, and they can be more robust because of
their non-hierarchical distributed control and management mechanisms. Ad-
hoc networks increase mobility and flexibility, as they can be brought up and
torn down in a very short time.

Ad-hoc networks form a relatively new and very diverse field of research.
In this book we focus our attention on the fundamental properties of ad-
hoc networks. For an ad-hoc network to function properly in the first place it
must be connected, or mostly connected. Otherwise the network would consist
of scattered isolated islands and could not support networking applications.
Secondly, the ad-hoc network must have enough capacity to transport the
required amount of data between network nodes. By fundamental properties
we mean those properties of the network that directly and substantially affect
the connectivity or the capacity of the network.

In this book we have introduced a new mathematical model for ad-hoc
networks which is based on realistic assumptions for radio propagation. By
using this model we were able to modify connectivity theorems for wireless ad-
hoc networks, and have contributed substantially to a better understanding of
degree distribution and hopcount in ad-hoc networks. Another novel aspect
in this book is a new method proposed for the calculation of interference

xvii



xviii Preface

statistics. Also, we have shown that interference in ad-hoc networks is upper
bounded and have derived a mathematical formula for this upper bound. Our
interference calculation methods have allowed us to investigate the capacity of
ad-hoc networks. We have found capacity limits for ad-hoc networks and have
established that in multi-hop ad-hoc networks there is a trade-off between the
network size and the maximum input bit rate possible per node. Large ad-
hoc networks, consisting of thousands of nodes, can only support low-bit-rate
applications.

Delft, The Netherlands Ramin Hekmat
March 2006
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1

Introduction to Ad-hoc Networks

We start this book with a brief introduction into ad-hoc networks. The pur-
pose of this short introductory chapter is to familiarize the reader with the
concept of ad-hoc networking before describing the fundamental research top-
ics considered in this book in Chapter 2.

In this chapter we will outline ad-hoc networks by comparing them with
wireless cellular communication systems. Some advantages and application
possibilities of ad-hoc networks are mentioned as well. Like any other wireless
communication system, ad-hoc networks are restricted in their capabilities
by radio technology limitations on data transmission speeds and range. In
order to get a fair idea of these restrictions, we will summarize in this chapter
basic characteristic features of some radio technologies commonly used at
the physical layer in ad-hoc networks. Further, because mobility support is a
challenge in ad-hoc networks, we will evaluate two methods for resolving this
issue.

1.1 Outlining ad-hoc networks

Ad-hoc networks are formed in situations where mobile computing devices
require networking applications while a fixed network infrastructure is not
available or not preferred to be used. In these cases mobile devices could set
up a possibly short-lived network for the communication needs of the moment,
in other words, an ad-hoc network. Ad-hoc networks are decentralized, self-
organizing networks and are capable of forming a communication network
without relying on any fixed infrastructure. A high-level description of ad-hoc
networks and related research topics can be found in [1] and [2].

In Figure 1.1 wireless ad-hoc networks are conceptually compared to tra-
ditional wireless cellular networks. Wireless multi-hop ad-hoc networks are
formed by a group of mobile users or mobile devices spread over a certain
geographical area. We call the users or devices forming the network nodes.
The service area of the ad-hoc network is the whole geographical area where

1



2 1 Introduction to Ad-hoc Networks

Fixed

Network

Fixed

Network

Conventional Networks: central management role for base stati ons

Multi-hop ad-hoc networks with (optional) connection to fixed networks

Fixed

Network

Fixed

Network

Stationary node/

Gateway

Stationary node/

Gateway

Large scale Multi-hop ad-hoc 

networks: self sustained networks

Fig. 1.1. Comparison of wireless cellular and wireless ad-hoc network concepts.

nodes are distributed. Each node is equipped with a radio transmitter and re-
ceiver which allows it to communicate with the other nodes. As mobile ad-hoc
networks are self-organized networks, communication in ad-hoc networks does
not require a central base station. Each node of an ad-hoc network can gener-
ate data for any other node in the network. All nodes can function, if needed,
as relay stations for data packets to be routed to their final destination. A mo-
bile ad-hoc network may be connected through dedicated gateways, or nodes
functioning as gateways, to other fixed networks or the Internet. In this case,
the mobile ad-hoc network expands the access to fixed network services.

Although single-hop ad-hoc networks are often used in practice1, when
we refer to ad-hoc networks in this book we always mean multi-hop ad-hoc
networks. The multi-hop support in ad-hoc networks, which makes commu-
nication between nodes out of direct radio range of each other possible, is
probably the most distinct difference between mobile ad-hoc networks and
other wireless communication systems.

1 For example, a laptop communicating with devices like a PDA, a memory storage
device and a video camera by using Bluetooth forms a single-hop ad-hoc network.
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1.2 Advantages and application areas

Mobile ad-hoc networks have certain advantages over the traditional commu-
nication networks. Some of these advantages are:

• Use of ad-hoc networks can increase mobility and flexibility, as ad-hoc
networks can be brought up and torn down in a very short time.

• Ad-hoc networks can be more economical in some cases, as they eliminate
fixed infrastructure costs and reduce power consumption at mobile nodes.

• Ad-hoc networks can be more robust than conventional wireless networks
because of their non-hierarchical distributed control and management
mechanisms.

• Because of multi-hop support in ad-hoc networks, communication beyond
the Line of Sight (LOS) is possible at high frequencies.

• Multi-hop ad-hoc networks can reduce the power consumption of wireless
devices. More transmission power is required for sending a signal over any
distance in one long hop than in multiple shorter hops. It can easily be
proved that the gain in transmission power consumption is proportional
to the number of hops made.

• Because of short communication links (multi-hop node-to-node commu-
nication instead of long-distance node to central base station communi-
cation), radio emission levels can be kept low. This reduces interference
levels, increases spectrum reuse efficiency, and makes it possible to use
unlicensed unregulated frequency bands.

Examples of potential applications of mobile ad-hoc networks are only
limited by imagination. We may think of a group of people with laptop com-
puters at a conference that wish to exchange files and data without media-
tion of any additional infrastructure. We also can think of deploying ad-hoc
networks in homes for communication between smart household appliances.
Ad-hoc networks are suitable to be used in areas where earthquakes or other
natural disasters have destroyed communication infrastructures. Ad-hoc net-
works perfectly satisfy military needs like battlefield survivability, operation
without pre-placed infrastructure and connectivity beyond the line of sight.
Figure 1.2 shows an interesting commercial application of ad-hoc networks
for local hazard warning on the road. Real-time hazard warning is just one
possible commercial application of ad-hoc communication networks.

A specific kind of ad-hoc network is the sensor network (see e.g. [3]), where
the nodes forming the network do not or rarely move. Sensor networks have
received much attention in recent years because they have huge potential ap-
plications. A sensor network is composed of a large number of sensor nodes,
which are densely deployed either inside the phenomenon to be observed or
very close to it. The position of sensor nodes need not to be engineered or
pre-determined. This allows random deployment in inaccessible terrains or in
disaster relief operations. The physical dimensions of sensor nodes, which can
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Fig. 1.2. BMW talking cars for local hazard warning: a working example of a
commercial application of ad-hoc networks. The car’s on-board computer uses data
coming from the brakes and ABS monitoring systems to decide whether and when
to transmit a hazard warning to other vehicles in its vicinity. This hazard waning
can then be relayed up to a predefined number of hops to other cars.

be in the order of a few cubic millimeters, along with their low costs due to
mass production, makes them suitable for many applications. Weather and
seismological monitoring, inventory control, chemical and biological monitor-
ing, and defense-related networks are just a few examples.

1.3 Radio technologies

In wireless ad-hoc networks, communication between nodes takes place over
radio channels. The radio technology used for this purpose can be any of a wide
range of systems and standards. Details of such radio communication tech-
nologies used in ad-hoc networks are beyond the scope of this book. However,
in order to get an impression regarding possibilities and restrictions imposed
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by radio communications we provide an overview of basic characteristics of
some radio technologies suitable for ad-hoc networks.

Depending on the service area size, a radio technology developed for
Wireless Personal Area Networks (WPAN), Wireless Local Area Networks
(WLAN), or Wireless Metropolitan Area Networks (WMAN) may be adopted
for ad-hoc networks [4]. The coverage radius of a WPAN is roughly in the or-
der of a few meters up to 20 meters. WLAN coverage radius is limited to
about 100 meters, while WMAN coverage is in the order of a few kilometers.
For each network type various wireless technologies have been proposed. Some
examples are:

• WPAN: Bluetooth, UWB
• WLAN: IEEE 802.11a, IEEE 802.11b, IEEE 802.11g
• WMAN: IEEE 802.16e

Basic characteristic features of these technologies are given in the Table
1.1 along with GPRS and UMTS cellular radio systems for comparison rea-
sons. This table serves only for rough quality and performance comparison
between technologies. The maximum supported bit rate, frequency allocation
and typical ranges are important features that determine the appropriateness
of each technology for applications to be provided by the ad-hoc network. For
example, dense low-bit-rate sensor networks may be built based on a WPAN
technology, while for communication between moving cars at distances in the
order of tens of meters a WLAN technology like IEEE 802.11b may be more
suitable. It is also worth mentioning that ISM frequency bands are license-
exempt frequency bands. This makes deployment of ad-hoc networks in these
frequency bands commercially attractive.

A look at the last column of Table 1.1 reveals that, in contrast to cellular
systems, the WPAN, WLAN and WMAN radio technologies have not been
designed specifically to support mobility or only allow very moderate forms
of mobility. However, wireless ad-hoc networks can consist of (fast) moving
nodes. How mobility is catered for when these radio technologies are used at
the link layer is briefly discussed in the next section.

1.4 Mobility support

The main advantage of wireless mobile communication systems is the sup-
port of mobility, which frees the users from restrictions of being attached to a
fixed location. Cellular systems like GSM/GPRS and UMTS support mobility
through handover and roaming procedures. Handover is applied when a user
moves through the coverage areas of various cells in a wireless network and
crosses cell boundaries. To support handover, cellular systems depend on ded-
icated signaling systems in parallel to the content transmission part of their
network. In cellular systems the handover between wireless cells of the same
type is often referred to as Horizontal Handover, and the handover between
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Table 1.1. Technical characteristics of wireless technologies

Maximum
data rate
(17)

Frequency
allocation

Channel
band-
width

Number of
RF Chan-
nels

Multiple
Access
technol-
ogy

Typical
range

Mobility
support

Bluetooth 1 Mbps 2.4 GHz
(ISM)

1 MHz 79 FHSS 10 m (1)

UWB 110 Mbps
(at 10m)

3.1-10.6
GHz

Min. 500
MHz Max.
7.5 GHz

1-15 THSS
OFDM
(11)

10-15 m (1)

IEEE
802.11b

11 Mbps 2.4-2.497
GHz
(ISM)

25 MHz 3 DSSS 50-80 m
(9)

(2)

IEEE
802.11g

54 Mbps 2.4-2.497
GHz
(ISM)

(10) (10) (10) 50-80 m
(9)

(2)

IEEE
802.11a

54 Mbps various
bands in
5 GHz
region

20 MHz US: 12
EU: 8
Japan: 4

OFDM 40-60 m
(9)

(2)

IEEE
802.16e

75 Mbps 2-11 GHz
10-66 GHz
(3)

1.5 – 20
MHz (3)

(3) (15) 30 km (4)
4 km (5)

(6)

GPRS 171 kbps
(12)

800, 900
and 1800
MHz
bands (13)

200 kHz
(13)

(13) TDMA
with FDD

1-5 km
(14)

Handover
possible
also at high
speeds

UMTS(W-
CDMA)
(8)

2 Mbps 1920-1980
MHz
2110-2170
MHz

5 MHz (7) DSSS 1-3 km
(16)

Handover
possible
also at high
speeds

Notes:
(1) Technology by itself does not support handover.
(2) Movement within a cell is possible. Technology by itself does not support handover.
(3) IEEE 802.16 is designed for a wide range of licensed and license-exempt frequencies with
flexile bandwidth allocation to accommodate easier cell planning throughout the world.
(4) With line of sight condition.
(5) Without line of sight condition.
(6) Mobility is only supported in the 2-6 GHz band. At walking speeds, handoff between
adjacent cells is possible.
(7) Number of frequency bands depends on the operator’s license.
(8) Of different variants of UMTS, here we only consider the European W-CDMA.
(9) Lower bound corresponds to 11 Mbps data rate, and upper bound corresponds to 2 Mbps
data rate.
(10) For data rates 1, 2, 5.5 and 11 Mbps the same channel spacing, bandwidth and modu-
lation is used as in IEEE 802.11b (for backwards compatibility). Other supported bit rates
use OFDM.
11) UWB can be implemented using several spreading technologies. Most implementations
use OFDM or THSS.
(12) This is the maximum data rate using 8 time slots and Coding Scheme 4 (CS-4).
(13) Same as in GSM.
(14) With Coding Scheme 1 (CS-1), the coverage radius of GSM voice and GPRS data is
the same, with CS-2, CS-3 and CS-4 the coverage radius reduces. Typical range in this table
is for urban areas. Theoretically the maximum range could be as much as 30 km.
(15) IEEE 802.16 physical layer supports three access technologies: 1. Single Carrier Mod-
ulation (CS), 2. OFDM in combination with TDMA and 3. OFDMA. OFDM and OFDMA
are mainly proposed for no line of sight operation.
(16) Typical range in this table is for urban areas. Theoretically the maximum range could
be as much as 20 km.
(17) Figures given here are for a single user. In the case of shared use of the radio channel,
the capacity is divided amongst all users.
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wireless cells of different network types (e.g., GPRS and UMTS) as Vertical
Handover [5]. Roaming can be considered as a special case of handover that
requires traffic handling agreements between operators and network providers
across country borders.

WLAN, WMAN and WPAN networks were designed for portable termi-
nals, often in a single-cell configuration. They cover specifications for the
Physical Layer and the Data Link Layer of the OSI model. These systems
can handle mobile stations but with serious restrictions. For example in IEEE
802.11, station mobility is handled within the MAC sub-layer, which implies
that a station may move, but maintenance of upper layer connections can-
not be guaranteed when a station moves across different LAN segments [6].
Therefore mobility needs to be managed at higher OSI layers. Because ad-hoc
networks are designed with cost efficiency and simplicity in mind, they tend
to be based entirely on the IP protocol suit. It seems then logical to attempt
an IP based solution for mobility support in ad-hoc networks. However, since
IP was not designed with mobility in mind, there are several problems that
need to be solved before ”all-IP” wireless networks can be deployed for mov-
ing users. Looking at the ad-hoc network developments and the research in
the past few years, we distinguish two basic methods for solving the mobility
issue in ad-hoc networks:

Mobile IP: The Mobile IP [7], with two flavors Mobile IPv4 and Mobile IPv6
([8] and [9]), is a well-known approach for mobility support in ”all IP” net-
works and an accepted standard by the IETF community [10]. Mobile IP
offers a pure network layer architectural solution for mobility support and
isolates the higher layers from the impact of mobility. However, an inter-
domain Mobile IP solution for handover can take up to a few seconds to
complete. This is certainly an adequate solution for nomadic users2, but
for fast and frequent handover of delay-sensitive voice and multimedia
applications, better solutions are required. For this purpose, various ad-
justments and enhancements to Mobile IP have been proposed. Examples
are Hierarchical Mobile IP, Cellular IP (CIP) and Handoff-aware Wireless
Access Internet Infrastructure (Hawaii) for local handover control [11].
However, none of these proposals has been implemented and proved to
work on a large-scale basis yet.

Fast routing protocols: Routing protocols are designed to cope with changes
in the network topology. In fixed networks, when a router or a link be-
comes unavailable, the routing mechanism finds an alternative route from
source to destination [12]. In ad-hoc networks, movement of nodes contin-
uously changes the topology of the network. Some nodes become unreach-
able while new nodes become available, old links are broken while new

2 A nomadic user moves from location to location requiring access to the network
at each location but not while on the move. An example of a nomadic user is a
person with a laptop who logs into a cooperate network to read his emails either
at the office or at home.
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ones are established at a fast rate. Theoretically, a routing protocol could
still trace network changes and allow nodes to find each other. In other
words, the mobility issue can be seen as a routing problem. However, the
routing protocols developed for fixed networks (like RIP or OSPF [13])
cannot handle rapid changes in the network and create a relatively large
routing overhead. Therefore, for ad-hoc networks special routing proto-
cols are needed. These protocols, provided that they are fast and efficient,
do solve the mobility problem. Routing in ad-hoc networks is basically
a compromise between the method of dealing with fast topology changes
and keeping the routing overhead minimal. There are proactive and reac-
tive protocols, and protocols that use a hybrid solution ([2], [4]). Proactive
methods maintain routes to all nodes, including nodes to which no packets
are to be sent. These protocols react to topology changes, even if no traffic
is affected by the changes. Reactive methods, on the other hand, find a
route between a source and a destination only when there is a demand for
data transmission. Reactive protocols are also called on-demand proto-
cols. Reactive routing protocols can significantly reduce routing overhead
in situations where the traffic load is low and the topology changes are
fast. However, proactive protocols suffer less from delay because a route
between the source and the destination is already known and needs not to
be found when the need arises. Hybrid methods try to combine the best
of both proactive and reactive methods [14], [15]. There is a huge amount
of research dedicated to routing protocols for ad-hoc networks (see e.g.
[16]). Although a single standard has not emerged yet, the IETF working
group MANET [17] is working intensively on a number of promising solu-
tions like TBRPF [18], AODV [19], and OLSR [20]. These protocols have
already been tested in various realistic settings with good results [21].

To summarize, there are two distinct methods for mobility support in
wireless ad-hoc networks: mobile IP, and fast routing protocols. Research in
both areas is still progressing. At this moment it seems that a solution based
on fast routing protocols is more widely accepted.
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Scope of the book

Despite their evident advantages and potential application possibilities, ad-
hoc networks are yet far from being deployed on a large-scale basis. Some
fundamental ad-hoc networking problems remain unsolved or need optimized
solutions. Here we give a few examples. Robustness of ad-hoc networks in
highly dynamic environments with changing loads and variable speeds of the
nodes has not been investigated thoroughly yet. Although various routing
protocols have been suggested and tested for mobile ad-hoc networks, per-
formance metrics like throughput, delay and protocol overhead in relation to
successfully transmitted data need better understanding and optimization.
This optimization would depend on the application type and on whether the
throughput is to be maximized or the delay to be minimized. One single
protocol would probably not work efficiently across the entire range of de-
sign parameters and operating conditions. An additional complexity factor in
ad-hoc network design is that the different layers of the system are highly
interdependent. Therefore, layers one, two, and three of the standard OSI
model probably could not be separated and optimized independent of the
other layers. To the list of research areas we can certainly add searching for
a suitable position determination system and position upgrade mechanisms.
One other major research topic is the interaction between ad-hoc networks
and the existing telecommunication systems and networks.

In addition to these technical points, there are various commercial, so-
cial and ethical topics that require attention. For example, it is still unclear
whether large-scale deployment of mobile ad-hoc networks can be seen as com-
plementary to existing cellular networks or as a threat to mobile operators.
Further, it is conceivable that public use of ad-hoc networks would require spe-
cific regulations and charging mechanisms that are not clear yet. In multi-hop
ad-hoc networks, the willingness of general public to share their communica-
tion device and its resources (as a relay station) with the total community of
ad-hoc network users is far from trivial. Although simple incentives like call
credits could prove to be commercial motivating factors, it is questionable
whether these incentives would be sufficient from an ethical point of view to

9
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Fig. 2.1. Positioning our work in the filed of ad-hoc and sensor networks research:
The inner zone shows topics in our main research and focus area. The second zone,
around the inner zone, includes topics about which we have made assumptions or
have performed light research. The third zone shows topics that have not been
included in our study.

motivate ad-hoc network users to function as relay stations for someone else’s
data.

From the short discussion above it may be evident that ad-hoc networking
is a vast research area. It is not surprising then to see that many aspects of
wireless ad-hoc networks are under investigation or have already been studied
by the international research community.

On the technical front, which is the focus of our work, various aspects
of ad-hoc networking have been studied in the past few years. For example,
extensive work has been done in the development and optimization of ad-hoc
network routing protocols ([17], [16]). Others have investigated the capacity
and the scalability of wireless ad-hoc networks ([22], [23], [24], [25]). The effect
of selfish nodes or misbehaving nodes on the stability of ad-hoc networks is
an interesting topic that has also received the necessary attention [26]. Due
to the complexity of ad-hoc networks, many of the study results in this field
are based on simulation models 1. However, in comparison to mathematical

1 In particular simulations based on ns-2 [27] are widespread and commonly used.
Network Simulator version 2 (ns-2) is a discrete-event simulator targeted at net-
working research. The source code of the program in C++ is open for adjustments
and additions. Many routines and modules in ns-2 are contributed by researchers
worldwide. ns-2 is often used for the simulation of routing protocols and MAC
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models, simulation models could be less suitable to provide an in-depth un-
derstanding of the system dependency on various parameters. Fortunately,
literature survey reveals that mathematical modeling of ad-hoc networks is
gaining increased attention ([29], [30], [31]). Furthermore, many publications
are emerging that analyze ad-hoc networks based on measurements rather
than on pure theoretical models ([32], [33]). We see this latter point as a pos-
itive development and a clear indication that ad-hoc networking is moving
from an academic concept towards a practical real-life solution.

Considering the diversity of research, it is important to outline the con-
tours of our work precisely and to formulate clearly the scientific contribution
of this book. In this book we have investigated fundamental properties of
multi-hop ad-hoc networks through realistic mathematical modeling of the
network. We explain what we mean by fundamental properties. For an ad-hoc
network to function properly, in the first place it must be connected (or mostly
connected). Otherwise the network would consist of scattered isolated islands
of nodes and could not support networking applications between most of the
nodes. Secondly, the ad-hoc network must have enough capacity to transport
the required amount of data between the nodes. By fundamental properties
we mean those properties of the network that directly affect the connectivity
or the capacity of the network. One novel aspect in our work is the use of
a realistic mathematical model for ad-hoc networks. By using this model we
believe that we have contributed substantially to a better understanding of
connectivity, degree distribution, and hopcount in ad-hoc networks. Another
novel aspect in this book is a new method for calculation of interference statis-
tics. Further, we have been able to show that interference in ad-hoc networks
is upper bounded and have derived a mathematical formula for this upper
bound. Our interference calculation methods have allowed us to investigate
the capacity of ad-hoc networks. We have found capacity limits for ad-hoc net-
works and have shown that the maximum supported data transmission speed
per node in ad-hoc networks is inversely proportional to the mean hopcount.
In other words, in ad-hoc networks there is a trade-off between the network
size and the maximum bit rate possible per node. For example, only ad-hoc
networks of small size with few hops can support high-bit-rate multimedia
applications.

To position our main focus areas in relation to other possible technical
research topics we refer to Figure 2.1. In this figure2, the core topics of our
study are shown in the inner zone in the middle of the figure. We will call
these topics the primary research topics of this book. For the study of primary
research topics we have made assumptions with respect to the topics depicted
in the second zone (the zone immediately around the inner zone). The topics in

protocols in wireless ad-hoc networks. However, this tool needs numerous im-
provements, especially regarding the physical layer and MAC modeling, in order
to provide results fitting realistic scenarios [28].

2 We don’t claim the list of topics depicted in Figure 2.1 to be exhaustive.
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this zone have not been studied in depth. However, when needed we obtained
information available in the literature and projected it in a way suitable for the
study of the primary research topics. We will call the topics in the second zone
the secondary research topics. The third zone (the outer zone) shows topics
of research that although very valuable to the study of ad-hoc networks in
general, are not relevant to our study.

The way that the primary and the secondary research topics are related
to each other is shown in Figure 2.2. Throughout this book we will see that
connectivity is affected by degree distribution and capacity by factors like
the hopcount distribution, Medium Access Control (MAC) protocols, and
interference.

Figure 2.2 can also be used to understand the structure of this book and
the way in which different topics are ordered. We present in Chapter 3 our
method for realistic modeling of wireless ad-hoc networks. The degree distri-
bution and the hopcount, based on our model for ad-hoc networks, are dis-
cussion topics in Chapters 4 and 5, respectively. The connectivity of ad-hoc
networks, which can be seen as a first indicative parameter for the robust-
ness of the network, is handled in Chapter 6. For the study of interference in
ad-hoc networks it is necessary to have a good model for effects of the MAC
protocols on simultaneously allowed transmissions. MAC protocols are the
topic of Chapter 7 and interference is studied subsequently in Chapter 8. For
the study of interference we have proposed a simplified model that facilities
mathematical analysis. This model is described in Chapter 9. The capacity of
ad-hoc networks is studied in Chapter 10. In that chapter we also explain our
assumption regarding the routing protocols and traffic patterns. Finally, our
overall conclusions are summarized in Chapter 11.
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It needs to be mentioned here that our study covers not only ad-hoc
networks but also sensor networks, which can be considered as a specific case
of ad-hoc networking with fixed nodes. Therefore, all results are also appli-
cable to sensor networks. We mention this point here and avoid persistent
repetition of the applicability of our results to sensor networks in the rest of
the book.
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Modeling Ad-hoc Networks

In wireless multi-hop ad-hoc networks, any node may have direct radio links
with some other nodes in its vicinity and each node can, if needed, function
as a relay station routing traffic to its final destination. Regardless of the
radio technology used or the movement pattern of nodes, from the topology
point of view, at any instant in time an ad-hoc network can be represented
as a graph with a set of vertices consisting of the nodes of the network and
a set of edges consisting of the links between the nodes (see Figure 3.1). We
assume that links between nodes are two-way, undirected links. There is a
link between two nodes if a signal transmitted from one node is received at
the other node above a minimum required power threshold (for more details
see Section 3.4.1). Two nodes are connected if there is a link between them.
It needs to be emphasized that we look at the network topology based on
the above-mentioned requirement for connectivity between nodes. Whether
two connected nodes can communicate with each other at the desired data
communication speed at all times is a matter of interference and capacity
calculation that are considered in Chapters 8 and 10. In other words, we have
chosen to separate network topology from network capacity. Whenever, due
to interference, communication between two connected nodes drops to lower
speeds or even becomes impossible we say that the link capacity is reduced,
instead of saying that the probability of connectivity between these two nodes
has decreased.

In this book we focus on fundamental properties of ad-hoc networks, in-
cluding the connectivity, the degree distribution and the hopcount. These
properties can be studied using a graph representation of the ad-hoc network.
The study of graphs is known as graph theory (see e.g. [34], [35], [36]). A
graph, G, is defined as a set of vertices V and a set of edges E and can be
denoted as G = (V, E). The sets V and E are always assumed to be finite.
An edge is a link between two vertices. An edge that joins the vertices i and
j is denoted by (i, j). The vertices i and j are the end-vertices of this edge. If
an edge exists between two vertices, then these two vertices are called adja-
cent or neighboring vertices of G. Two edges are called adjacent if they have

15
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Fig. 3.1. Snapshot of an ad-hoc network. In this graph, dots represent nodes form-
ing the network and lines indicate links between nodes. Links are assumed to be
established over wireless channels.

exactly one common end-vertex. To the edges of a graph specific values or
weights may be assigned, in which case the graph is called a weighted graph.
The edges of graphs may also be accommodated with directedness, in which
case each edge is given a unique direction. A simple graph, also called a strict
graph [37], is an unweighted, undirected graph containing no self-loops1 and
at most one edge connecting any two vertices. Unless stated otherwise, the
unqualified term ”graph” in this book will refer to a simple graph.

When graph theory is used to describe a network, the nodes in the net-
work correspond to the vertices in the graph and the links between the nodes
correspond to the edges of the graph.

Before proceeding with the description of graph models for ad-hoc net-
works we describe here a few general terms and definitions that will frequently
be used throughout this chapter.

Complete graph A complete graph has an edge between every pair of vertices.
Adjacency matrix When a network is presented as a graph, the topological

structure of a network with N nodes can be described by the adjacency
matrix A. Adjacency matrix is a N ×N matrix where each element aij of
A is either zero or one: aij = 1 if there is a link between node i and node

1 An edge having same vertex as both its end-vertices is called a self-loop.
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j, else aij = 0. Hence, the adjacency matrix expresses how the nodes in
the network are interconnected.

Degree The degree of node i is the number of direct neighbors of that node
in the network: di =

∑N
j=1 aij.

Connectedness A graph G is connected if there exists a path {i, ..., j} between
any pair of vertices i and j. To achieve a fully connected network, there
must be a path from any (source) node to any other (destination) node.
The path between the source and the destination may consist of one hop
(when source and destination are neighbors) or several hops. When there
is no path between at least one source-destination pair, the network is
said to be disconnected. A disconnected network may consist of several
disconnected islands or clusters.

Giant component The largest connected cluster in the network is called the
giant component. In a fully connected network the giant component covers
the entire network. When the network is not fully connected, we only speak
of a giant component when a single cluster clearly dominates in size all
other clusters.

Hopcount The hopcount specifies the number of hops on the path between a
source and a destination. The average hopcount in a network is the average
value of the hopcount between all possible source-destination node pairs.

Shortest path The shortest path between two nodes is the one having the
shortest length (shortest number of hops).

Diameter Let S be the set of the lengths of the shortest paths between all
pairs of nodes in the network. The diameter of the graph is the maximum
of S.

Clustering coefficient For node i with di ≥ 2, an edge (u, v) is opposite to
node i if there exist edges (i, v) and (i, u). The clustering coefficient of
node i is defined as:

ci =
number of opposite edges of i

di (di − 1) /2
.

The clustering coefficient is thus the ratio between the actual number of
links between the neighbors of node i and the maximum possible number
of links between these neighbors. In other words, the clustering coefficient
is the ratio between the number of triangles that contain i and the number
of triangles that would contain i if all neighbors of i were interlinked (see
Figure 3.2). The clustering coefficient of G, denoted by CG, is the average
of ci for all nodes with di ≥ 2.

Local correlation Let node i be connected to node j. If the probability of node
i being connected to the neighbors of node j is higher than the probabil-
ity of node i being connected to other nodes in the network (all nodes
except node i’s one-hop and two-hop neighbors), we say that edges are
locally correlated. If edges are independent, the probability of node i be-
ing connected to any node in the network is the same. It is obvious that
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Fig. 3.2. Example of clustering coefficient for a node.

local correlation increases the clustering coefficient. However, a high clus-
tering coefficient value does not necessarily mean strong local correlation
between nodes. For example, a complete graph has the highest clustering
coefficient value while all edges may still be independent.

Small-world property A network is said to have the small-world property
when the hopcount in that network is not strongly affected by an in-
crease in the network size. Please note that we use the term ”strongly”
in a rather loose sense. This phenomenon is addressed very often in the
literature (see e.g. [38]). In a network with the small-world property, there
is a high probability that there is a relatively short path between any two
nodes, despite the large size of the network. The small-world property has
already been observed in social networks as well as neural networks [39].
Even the World Wide Web pages seem to possess the small world prop-
erty [40]. The most famous manifestation of the small-world property has
been formulated as ”six degrees of separation”, uncovered by the social
psychologist Stanley Milgram in 1967 [41]. It refers to the concept that
everyone is connected to everyone else in the world by only six degrees of
separation, or six sets of acquaintances.

For the study of network characteristics in general, different graph models
may be proposed. In this chapter we consider the Erdös and Rényi random
graph model, the regular lattice model, the scale-free model, and the geometric
random graph model. Although knowledge of all these models is essential for
our study, it will become clear that not all of these models are equally suitable
to characterize wireless multi-hop ad-hoc networks.

3.1 Erdös and Rényi random graph model

The random graph of Erdös and Rényi [42] is one of the best studied models of
a network [43]. This model is exactly solvable for many of its average properties
[34]. Unless stated otherwise, the term ”random graph” in this book will refer
to the Erdös and Rényi random graph.

A random graph with N vertices and L edges can be constructed by
starting with N vertices and zero edges. Then L edges are chosen randomly
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and independently from the N(N − 1)/2 possible edges. In total, there are
(
N(N−1)/2

L

)
equiprobable random graphs with N vertices and L edges. An-

other way of looking at random graphs is the assumption that any pair of
vertices in a random graph is connected with the probability p. The number
of edges L in the random graph is then a random variable with the expectation
E[L] = pN(N−1)

2 .
It should be obvious by now that the random graph model is not a realistic

representation of a wireless ad-hoc network. After all, in ad-hoc networks two
nodes at close range have a higher probability of being connected than nodes
at farther distances. However, we will proceed with a description of some of
the properties of the random graphs in this section, because these results are
required for a better understanding of the model of ad-hoc networks presented
later in this chapter.

We denote a random graph by Gp(N), where N is the number of nodes
in the graph and p is the probability of having a link (edge) between any
two nodes [34]. The fundamental assumption in random graphs is that the
presence or absence of a link between two nodes is independent of the presence
or absence of any other link. As mentioned before, the degree of a node i,
denoted as di, is defined as the number of nodes connected directly to node i.
In other words, the degree of a node is the number of neighbors of that node.
In a random graph, di has by definition a binomial distribution [34]:

Pr [di = k] =
(

N − 1
k

)

pk (1 − p)N−1−k � zke−z

k!
, (3.1)

where z is the mean (average) node degree: z = E [di] = (N − 1)p. The
variance of the node degree is (N − 1) p(1 − p). The second term in (3.1) is
the Poisson approximation for large N .

As each node in the random graph is connected to about z other nodes,
after h hops, zh nodes have been reached (assuming a tree-like graph structure
with no short loops, which is a correct assumption when z is sufficiently small
compared to N). All nodes are reached typically when zh � N . This implies
that the typical average hopcount E[h] in random graphs is

E[h] � log (N)
log(E[d])

. (3.2)

This formula for the expected hopcount in random graphs is also given
by Albert and Barabasi [44]. Although (3.2) is a rough approximation, it
indicates clearly that the average hopcount in random graphs scales with the
logarithmic value of the number of nodes. A better approximation is provided
by Newman, Strogatz and Watts in [29]:

E[h] � log (N/E[d])
log (E[d(d − 1)]/E[d])

+ 1. (3.3)

There exists a very close approximation for the mean hopcount given by
Hooghiemstra and Van Mieghem ([45], [46]). Although an explanation of the
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Fig. 3.3. Comparison of three hopcount formulas with simulated values for a ran-
dom graph of 500 nodes. Simulation results are average values for 1000 experiments,
with standard deviation shown as error bars. For better visibility, we have blown up
the section around the mean degree of 6.

latter formula is beyond the scope of this book, we have compared these three
formulas with simulated values of the hopcount in Figure 3.3. As we can see
from this figure, the simulation results match best with the Hooghiemstra
and Van Mieghem estimate, however, despite its simplicity, (3.2) seems to be
a good approximation of the hopcount as well.

An interesting aspect of random graphs is the existence of a critical prob-
ability at which a giant cluster forms. This means that at low values of p,
the random graph consists of isolated clusters. When the value of p increases,
above a threshold value a giant cluster emerges that spans almost the entire
network. This phenomenon is similar to the percolation transition, a topic
much studied in both mathematics and statistical mechanics (see e.g. [47]). If
S is the fraction of the graph occupied by the giant component, for large N
in random graphs, S is the solution to the following equation [29], [48]:

S = 1 − exp(−zS), (3.4)

where z = E [d] is the mean degree of the graph. Fast converging series have
been found [49] to solve (3.4), but a standard zero finding algorithm like the
Newton-Raphson method can also be used to find S as function of z. Figure
3.4 shows the values of S found as function of the mean degree by solving 3.4.
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Fig. 3.4. Growth of the giant component size as function of the mean nodal degree
in a random graph.

Because clustering coefficient is the percentage of neighbors of a node that
are connected to each other, and in a random graph links between nodes are
established independently with probability p, we may expect the clustering
coefficient in a random graph to be:

CG = p.

This result has been proved in both [50] and [44].

3.2 Regular lattice graph model

A regular lattice graph is constructed with nodes (vertices) placed on a regular
grid structure. Adjacent nodes on the grid are all equidistant (although this
distance can be defined to be non-metric). The probability that two adjacent
nodes on the grid are connected is p. Non-adjacent nodes cannot be linked
directly. Links (edges) are then created independently and are all equiproba-
ble. Figure 3.5 shows an example of a 2-dimensional lattice graph on a square
grid of size 10 × 20 for two different values of p.

Let us see how suitable the lattice graph model is to represent ad-hoc net-
works. In wireless ad-hoc networks, nodes use radio communications to form
links with other nodes. Because radio signal powers decay with increasing dis-
tance between nodes, the link probability is bound to be a function of the
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p = 0.3 p = 0.8

Fig. 3.5. A 2-dimensional lattice graph on a 10×20 square grid with p = 0.3 (figure
on the left) and p = 0.8 (figure on the right).

distance between nodes. We see that the lattice model and ad-hoc networks
share the notion that the distance between nodes influences the link proba-
bility. From this point of view, the lattice model is more suitable to represent
an ad-hoc network than the random graph model discussed previously. How-
ever, the position of nodes in an ad-hoc network (or even a sensor network)
is generally not fixed to a regular lattice. Further, in radio communication
the distance over which nodes can ”see” each other is not a fixed value. De-
spite these differences, we will here study some basic characteristics of lattice
graphs in more detail to gain a better understanding of the properties of our
model for ad-hoc networks, which is described later in Section 3.4.3.

We denote a 2-dimensional lattice graph on a square grid of size m × n
with Gm,n. The number of nodes in this lattice graph is N = m × n. For a
dense lattice graph with p � 1, it is easy to verify that the mean degree is

E[dm×n] = 4 − 2(m + n)
m × n

. (3.5)

The expected value of the hopcount is

E[hm×n] =
m + n

3
if m�n= O(

√
N). (3.6)
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Fig. 3.6. Hopcount along a one-dimensional lattice.

where O(.) is the big-O asymptotic order notation [51] 2.

To prove (3.6), we start with a one–dimensional lattice of 1 × n nodes. In
this lattice, there are always n−k node combinations with hopcount k, where
1 ≤ k ≤ n − 1 (see Figure 3.6, top part). Based on this distribution:

Pr[h = k] =
n − k
∑n−1

i=1 i
=

2(n − k)
n(n − 1)

,

and

E [hk=1...n−1] =
n−1∑

k=1

k Pr [h = k] =
n−1∑

k=1

2k(n − k)
n(n − 1)

=
n + 1

3
.

In a 2-dimensional lattice, any hopcount from one node to another can
be projected to a corresponding number of one-dimensional horizontal and
vertical hops. However, it is possible that either the horizontal or vertical
hopcount is zero. For a one-dimensional lattice of 1 × n nodes, if we consider
the possibility of zero-length hops, there are always n − k node combinations

2 Notation f(N) = O (ϕ(N)) where N is an integer which tends to infinity means
that asymptotically |f(N)| < cϕ(N) for some constant c.
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hopcount k where 0 ≤ k ≤ n − 1 (see Figure 3.6, bottom part). Based on this
distribution:

Pr [h = k] =
n − k
∑n

i=1 i
=

2(n − k)
n(n + 1)

,

and

E [hk=0...n−1] =
n−1∑

k=0

k Pr [h = k] =
n−1∑

k=0

2k(n − k)
n(n + 1)

=
n − 1

3
.

In the 2-dimensional lattice of size n × m, that has n nodes in horizontal
direction and m nodes in vertical direction, we have:

hn×m = hhorizontal + hvertical

E [hn×m] = E [hhorizontal] + E [hvertical]

For each occurrence of hn×m, either hhorizontal or hvertical can be 0 but not
both simultaneously. Either way for the mean hopcount value we can write:

E [hn×m] = E [hk=1...n−1] + E [hk=1...m−1] − 2
3

=
n + m

3
,

which proves (3.6).

When we compare the hopcount in lattice graphs (3.6) with that in ran-
dom graphs (3.2) we note that in lattice graphs the hopcount growth is poly-
nomial with respect to increasing network size N , while in random graphs
the expected hopcount is only logarithmic in N . We can thus say that lat-
tice networks do not have the small-world property while random graphs do.
The question is then which of these two more closely resembles the behavior
of ad-hoc networks. In other words, do wireless ad-hoc networks possess the
small-world property? Because radio signals have limited range, when the size
of the service area of an ad-hoc network increases, to reach farther nodes, the
hopcount needs to increase as well. From this point of view, ad-hoc networks
seem to be like lattice graphs and can be expected not to have the small-world
property. However, radio signal powers always fluctuate and are unpredictable.
As a result, depending on the strength of the power fluctuations and the ac-
tual service area size, as we will see later on in this chapter, ad-hoc networks
may show some degree of the small-world property. A different matter is when
ad-hoc networks increase in size (number of nodes) while the service area does
not change. In this situation, the diameter of the network is not expected to
change by the increase in network size.
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3.3 Scale-free graph model

Various authors have observed ([29], [52], [53]) that real-world networks such
as the Internet, social networks and biological networks cannot be modeled as
random graphs. The binomial degree distribution in random graphs seems to
be an unrealistic assumption for these network types. Further, the clustering
coefficient in these networks is typically much larger than in random graphs
of equal number of vertices and edges [39]. Based on experimental studies, a
more realistic model is suggested for the presentation of real-world networks
which assumes that the degree distribution has a power-law tail [54]. In other
words,

Pr [d = k] � k−γ , (3.7)

where γ is a constant independent of the size of the network. Because of the
independence of the degree distribution from the network size, these networks
are referred to as scale-free networks. The value of γ is found to be different
for various network types. For experimentally found values of γ in ecological
networks, movie actor collaboration network, science collaboration graph and
the Internet we refer to [44]. A specific method for generating a scale-free
network is a process in which vertices are added to a graph one at a time
and joined to a fixed number of earlier vertices, selected with probabilities
proportional to their degrees. This process creates a scale-free network with
γ = 3 [55].

The power-law degree distribution influences the way in which the network
operates, including how it responds to catastrophic events. A scale-free graph,
where a very small number of network nodes (called hubs) are far more con-
nected than other nodes, shows striking resilience against random breakdowns.
In scale-free networks, in spite of large sizes of the networks, the distances be-
tween most vertices is short because these paths usually go through the hubs.
The small-world property is more strongly present in scale-free networks than
in random graphs.

Despite the suitability of the scale-free network model for many social
and man-made networks, we argue here that the scale-free network model is
not appropriate for ad-hoc networks. In an ad-hoc network where nodes are
uniformly distributed over the service area, and radio propagation conditions
as well as radio transmit power and receiver sensitivity are the same for all
nodes, there is no reason to assume that some nodes may have a much higher
number of neighbors than other nodes.

3.4 Geometric random graph model

Having considered the random graph, the lattice and the scale-free graph
models, we discuss in this section the geometric random graph model and will
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show how this model can be adapted to become a realistic model for ad-hoc
networks.

A wireless ad-hoc network consists of a number of nodes (radio devices)
spread over a certain geographical area. Each node may be connected to other
nodes in its vicinity. In wireless ad-hoc networks, because of node movements
and radio signal fluctuations, the topology of the network can change from
time to time. However, as mentioned before, at any instant in time, an ad-hoc
network can be considered as a graph with a certain number of nodes and
links between nodes.

Ad-hoc networks cannot be modeled as pure random networks. As dis-
cussed in previous sections, in a wireless ad-hoc network the actual set of
connections, in contrast to random graphs or scale-free networks, depends on
the geometric distance between nodes. A direct consequence of the depen-
dency of the links on the distance between nodes is that in wireless ad-hoc
networks there is an increased probability of two nodes to be connected when
they have a common neighbor. In other words, in a wireless ad-hoc network
links are locally correlated. In the literature, graphs with distance-dependent
links between nodes and correlated links are referred to as geometric random
graphs (see e.g. [30]). Local correlation between nodes increases the clustering
coefficient [44].

We denote an undirected geometric random graph with N nodes by
Gp(rij)(N), where p(rij) is the probability of having a link between two nodes
i and j (or j and i) at metric distance rij . We assume in a geometric random
graph N nodes are uniformly distributed over the entire service area. This
is not an obligatory requirement for the model in general, but it is always
assumed to be the case in our study. The reliability of a geometric random
graph model depends directly on the accuracy of p(rij). In other words, for a
reliable model we need to have an accurate description of radio propagation
characteristics that determine the link probability between nodes in wireless
environments. In Section 3.4.1 we provide an incomprehensive overview of
radio propagation theory. This theory will be used to describe two different
geometric random graphs models for ad-hoc networks in Sections 3.4.2 and
3.4.3.

3.4.1 Radio propagation essentials

Radio propagation characterization and modeling the radio channel has al-
ways been one of the most difficult parts of the design of terrestrial wireless
communication systems. A mobile wireless ad-hoc network is no exception.
Stronger yet, good modeling of the radio channel could be more important in
the design of ad-hoc networks than in the traditional wireless communication
systems. In ad-hoc networks not only the service quality but also the whole
routing and network topology is affected by the impairments over the radio
links.
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Radio channel is generally hostile in nature and it is very difficult to predict
its behavior. Any model for a radio link is bound to be a simplification of the
reality. In general the radio channel is modeled in statistical way using real
propagation measurement data. A lot of measurements have been done to
obtain information concerning propagation loss and signal power variations
(fading) in classical radio communication systems ([56], [57], [58], [59]). These
measurements have shown that generally the signal fading over a radio channel
between a transmitter and a receiver can be decomposed into 3 components
([60], [61]):

1. a large scale pathloss power component,
2. a medium scale slow varying power component having a lognormal distri-

bution, and
3. a small scale fast varying amplitude component with a Rayleigh (Rician)

distribution without (with) a Line-of-Sight connection between the trans-
mitter and the receiver.

The large scale pathloss indicates the dependency of the expected received
signal mean power to the distance between the transmitter and the receiver.
The small scale fading is used to describe rapid fluctuations of the amplitude
of a radio signal experienced by a mobile user over a short period of time (in
the order of a few milliseconds up to seconds) or travel distance (in the order
of a few wavelengths) [61]. The medium scale component captures variations
in the radio signal power over distances much larger than a few wavelengths. It
is related to the fact that the signal power measured at two different locations
having the same transmitter-receiver separation may vastly be different from
each other. Figure 3.7, although a rough simplification of reality, relates the
large scale, medium scale and small scale propagation effects to each other. As
indicated in this figure, when a nodes moves, in the order of a few wavelengths,
in the vicinity of each of the locations 1 to 5 or when the radio channel charac-
teristics change overtime, the received radio signal level fluctuates according
to the small scale model. The mean received signal power values at locations 1
to 5 are, respectively, p1 to p5. These values are different from each other and
are, when expressed in dBm or dBW, normally distributed according to the
medium scale propagation model. The mean values of all pi’s taken at many
positions with the same distance to the receiver is the large scale pathloss
component.

Attenuation of radio signals due to the pathloss effect has been modeled by
averaging the measured signal powers over long times and over many distances
around the transmitter. The averaged power at any given distance to the
transmitter is referred to as the area mean power Pa (in Watt or milliwatt).
The pathloss model states that Pa is a decreasing function of the distance r
between the transmitter and the receiver, and can be represented by a power
law [60]:
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at distance r.

Pa(r) = c

(
r

r0

)−η

. (3.8)

In this formula r0 is a reference distance3. Parameter η is the pathloss
exponent which depends on the environment and terrain structure and can
vary between 2 in free space to 6 in heavily built urban areas. In indoor
environments with line-of-sight condition, pathloss exponent values of about
1.6 to 1.8 have been measured as well [61]. The constant c depends on the
transmitted power, the receiver and the transmitter antenna gains and the
wavelength [61].

The medium scale power variations are modeled with a lognormal distri-
bution. In the lognormal radio model the mean received power taken over all
possible locations that are at distance r to the transmitter is equal to the area
mean power, similar to the pathloss model. However it is further assumed that
the average received power varies from location to location in an apparently
random manner [56]. More precisely, the lognormal radio model assumes that
the logarithmic value of the received signal power at distance r is normally
distributed with standard deviation σ around the logarithm of the area mean
power. The magnitude of the standard deviation indicates the severity of signal

3 This distance for low-gain antennas in 1-2 GHz region is typically chosen to be 1
m in indoor environments and 100 meter or 1 km is outdoor environments [61].
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fluctuations caused by irregularities in the surroundings of the receiving and
transmitting antennas. The lognormal model allows then for random power
variations around the area mean power. The medium scale power variation is
often referred to as lognormal shadowing model [61]. However, in our opinion
the term ”shadowing” used in the name of this model is somehow confusing
because shadowing may imply that the model considers correlated fading in
the received power at two locations blocked from the transmitter by means
of a physical obstruction. This however is not the case. Variations in radio
signal power at different locations with the same distance to the receiver are
assumed to be random and independent. The dependent reduction in radio
signal powers due to obstruction by buildings is better referred to by the term
”blocking” and is not included in the model.

Let the received power at distance r from the transmitter be denoted by
P(r). In the lognormal model the basic assumption is that the logarithm of
P(r) is normally distributed around the logarithmic value of the area mean
power:

10 log10 (P(r)) = 10 log10 (Pa(r)) + x. (3.9)

In this expression x is a zero-mean normal distributed random variable (in
dB) with standard deviation σ (also in dB). The standard deviation is larger
than zero and, in case of severe signal fluctuations due to irregularities in
the surroundings of the receiving and transmitting antennas, measurements
[61] indicate4 that it can be as high as 12. We notice that when σ = 0, the
lognormal model reduces to the pathloss model. So, the pathloss model can
be seen as a specific case of the more general lognormal model.

The small scale signal fluctuations without Line-of-Sight component5 are
represented with a Rayleigh distribution, and therefore are also referred to
as Rayleigh fading. Rayleigh fading, named after Lord Rayleigh [62], is the
fading of a communications channel generated by the combination of different
out-of-phase signals traveling along different paths. The probability density
function of a signal amplitude subject to Rayleigh fading is [63]:

fα (α/p) =

{
2α
p exp

(
−α2

p

)
0 ≤ α < ∞

0 α < 0

where α is the signal amplitude and p is the average power of the signal. The
instantaneous power of Rayleigh faded signal is p = α2. Using the transfor-
mation [64]:
4 It should be noted the measurements that we refer to have been done on lower

frequencies than frequencies used in WLAN networks. If a wireless ad-hoc network
is making use of WLAN radio modules, the range of variation in σ could be
different.

5 In this book we will not describe the small scale fading model with Line-of-Sight
component which is presented with a Rician distribution. For more information
about Rician fading we refer to [60, Chapter 2].
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ϕ(z) = f(x)
∣
∣
∣
∣
dx

dz

∣
∣
∣
∣ if z = h(x),

we obtain the following expression for the instantaneous power of a Rayleigh
faded signal:

fp (p/p) =
1
p

exp
(

−p
p

)

. (3.10)

3.4.2 Pathloss geometric random graph model

Geometric random graphs have been proposed to model wireless ad-hoc net-
works before (see e.g. [65], [66], [67], [68]). As we mentioned in the beginning
of this section, for realistic modeling of ad-hoc networks it is essential to have
an accurate model for the link probability between nodes. All geometric ran-
dom graph models proposed in the literature prior to our model suggestion
(see [69]) were based on the pathloss radio propagation model. Due to the
dependency of the link probability in this geometric random graph model on
the pathloss radio propagation model, we call this model throughout this book
the pathloss geometric random graph model.

Let us assume that for correct reception of radio signals it is required that
the received power at the receiver is more than a certain threshold value P.
The coverage area of node i in a wireless ad-hoc network is the collection of
all the points j in the 2-dimensional space where the received signal power
from i is more than P. A node can communicate directly with nodes that
fall inside its coverage area but not with other nodes. If the pathloss radio
model is used, based on (3.8) all nodes within the range R = r0

(
c
P
)1/η can

communicate with each other. This means that the necessary and sufficient
condition for two nodes to be connected is that the distance between them is
less than R. Depending on the value of R graphs representing ad-hoc networks
can be dense or sparse, connected or not connected.

The pathloss geometric random graph model results into a perfect circu-
lar coverage area around each node with radius R. In this model the link
probability between two nodes p(rij) is a simple step function:

p(rij) =
{

1 0 < rij ≤ 1
0 rij > 1 . (3.11)

The pathloss geometric random graph model resembles a highly clustered
lattice network with the difference that in the pathloss geometric random
graphs, due to strict distance dependency, links between nodes are locally
correlated.

Although used extensively in the literature, the pathloss geometric random
graph model is in our opinion not a realistic model for ad-hoc networks. In
reality the received power levels may show significant variations around the
area mean power. Due to these variations, the coverage area will deviate from
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Fig. 3.8. Schematic view showing the nondeterministic nature of radio links where
in reality short distance links may not exist while longer distance links do.

a perfect circular shape and consequently, some short links could disappear
while long links could emerge (see Figure 3.8). In the next section we propose a
more realistic model for ad-hoc networks than the pathloss geometric random
graph model. Our model allows for random signal power variations and is
described by us in [69] and [70].

3.4.3 Lognormal geometric random graph model

We discussed earlier that the random graph model is not a suitable model
for ad-hoc networks, because in random graphs there is no correlation be-
tween links and any two nodes have the same probability of being connected.
When researchers realized that random graphs are not suitable to model ad-
hoc networks, they shifted en masse towards the pathloss geometric random
graph model, with very strict and deterministic view, implying that every
node within a circle must be connected to the center node. The pathloss
geometric random graph model is an attempt towards better modeling of ad-
hoc networks. It indeed introduces the notion of distance dependency and
adds correlation between links, but it oversimplifies the reality by assuming a
perfect circular coverage area for all nodes. Because the nature of radio prop-
agation is nondeterministic and to some degree random, we argue here that
the best model for representation of wireless ad-hoc networks lies probably in-
between a random graph approach and the pathloss geometric random graph
approach. Therefore we propose a model with more relaxed local correlation
between links. In this regard we suggest a shift back towards (but not com-
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Fig. 3.9. Shift in views for modeling ad-hoc networks.

pletely back to) the random graphs that have no notion of local correlation
(see Figure 3.9).

The approach used in this book to make a more realistic geometric random
graph model is by taking the medium scale radio signal power variations into
account. Medium scale power fluctuations are assumed to have lognormal
distribution, as described in Section 3.4.1. Due to the dependency of the link
probability in our model on the lognormal radio propagation, we call our
model throughout this book the lognormal geometric random graph model.
In the rest of this book whenever the term geometric random graph is used
without explicit mentioning of pathloss or lognormal, we always mean the
lognormal geometric random graph.

In our modeling we have not considered the small scale fluctuation of signal
amplitudes (the Rayleigh or Rician fading). If we may assume that during the
life time of a link the small scale fading effects are averaged-out (over time or
over distance), then including small scale fading effects is not sensible. How-
ever, we do not exclude the possibility of adding more accuracy to the model
by taking the small scale fading into account as well. As a matter of fact, we
believe that radio modeling for better understanding of ad-hoc network char-
acteristics is a research area where a lot needs to be done yet. Our approach
here should therefore be seen as an attempt towards this goal. Shortly after the
publication of our geometric random graph model [69], the lognormal model of
medium scale power variations appeared to be suggested for modeling ad-hoc
networks by Bettstetter as well [71]. This naturally strengthened our belief in
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our model and encouraged us to continue the study of fundamental properties
of ad-hoc networks based on the lognormal radio model.

The power received at node j from node i with distance rij between them
according to the lognormal radio model is found using (3.9):

10 log10 (P(rij)) = 10 log10 (Pa(rij)) + x.

To eliminate parameters not relevant to our study, we normalize variables
as follows. In Section 3.4.2 we already defined R as the distance where the
area mean power Pa(rij) is equal to P, the receiver sensitivity. In other words,
P = c (R/r0)

−η. By dividing powers by P and using (3.8) we find:

10 log10

(
P(rij)

P
)

= 10 log10

((rij

R

)
−η
)

+ x

10 log10 P̂(r̂ij) = 10 log10
(
r̂−η
ij

)
+ x, (3.12)

where we define r̂ij � rij/R as the normalized distance and P̂(r̂ij) � P(rij)/P
as the normalized power. From this formula we see that the logarithm of
normalized power has normal distribution with the mean 10 log10

(
r̂−η
ij

)
and

the variance σ2 (variance of x). The condition for correct reception of signals
at normalized distance r̂ij is that the normalized power at this distance is
more than 1 (or zero dB). The probability that two nodes are connected (link
probability) is then [70]:

p(r̂ij) = Pr
[
10 log10(P̂(r̂ij)) > 0

]

=
1√
2πσ

∫ ∞

0
exp

[

− (t − 10 log10 (r̂ij
−η))2

2σ2

]

dt

=
1
2

[

1 − erf
(

υ
log (r̂ij)

ξ

)]

, ξ � σ/η (3.13)

where υ = 10/(
√

2 log 10), and ξ is defined as the ratio between the standard
deviation of radio signal power fluctuations, σ, and the pathloss exponent, η.
Low values of ξ correspond to small variations of the signal power around the
area mean power and high values of ξ correspond to stronger power variations.
Based on the aforementioned range of possible values for η and σ in Section
3.4.1, we note that theoretically ξ may vary between 0 and 6 [70], although
values higher than 3 seem to be unrealistic [72], because high values of σ
correspond to heavily built and irregular areas where the pathloss exponent is
high as well. The best way to determine the most probable value range for ξ
is through extensive measurements. To our knowledge reliable and extensive
measurements of this type for typical wireless ad-hoc network environments
are not available yet. We have performed ourselves some limited measurements
that will be discussed in Section 3.5.
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Fig. 3.10. Link probability in lognormal geometric random graph model for different
ξ values. In the case ξ = 0 the lognormal model reduces to the pathloss model with
circular coverage per node.

In the case of ξ → 0, our model is equivalent to the pathloss model (3.11)
with a simple step function as link probability:

lim
ξ→0

p(r̂ij) =
{

1 if r̂ij < 1
0 if r̂ij > 1

.

This means that our lognormal geometric random graph model is a more
general case of the pathloss geometric random graph model. Figure 3.10 shows
for different values of ξ the link probability calculated with (3.13). It should be
noticed that the normalized distance 1 depends directly on pathloss exponent
η. So, the actual length of the normalized distance 1 for any of the lines in
Figure 3.10 need not to be the same.

With the lognormal radio model for ξ > 0 there is a nonzero probability
that nodes at a distance larger than 1 are connected, while there is a nonzero
probability that nodes at distances less than 1 are disconnected. In Figure
3.10 we see that as signal fluctuations become more severe (as the value of ξ
increases), the link probability at short distances reduces, while at large dis-
tances the link probability increases. We mention here briefly that especially
the long-distance connectivity probability will affect the hopcount and con-
nectivity in the network; similar to the small world networks extended with a
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few ”long” links [38]. This matter will be investigated extensively in Chapters
5 and 6.

Figure 3.11 shows results where we used (3.13) to located points in a
squared area of normalized size 10 × 10 that at a certain instant in time are
connected to a node in the center of this area at coordinates (0, 0). The points
shaded in this figure represent the connected points to the center node. This
collection of points can be considered as the coverage area around the center
node for different values of ξ. It should be noticed that the area of coverage is
not an area with fixed boundaries. It can change according to the distribution
function of the lognormal model. When ξ = 0 (upper left subplot in Figure
3.11), variance of the received power around the area mean power is zero,
and the coverage area is a perfect circular area with normalized radius 1.
As the value of ξ increases, variations in the received power increase as well.
Consequently we will have more nodes at normalized distances larger than
1 that may have a link with the center node. From the reduced density of
shaded points at close distances to the center node, we conclude that there
are nodes at distances less than the normalized distance 1 that do not have a
link with the center node.

3.5 Measurements

We mentioned before that there are not enough measurement results in the
literature to verify the lognormal radio propagation model for wireless ad-
hoc networks in indoor and outdoor environments. We have performed our
own limited measurements. In this section we describe general set up of the
measurements and discuss final results.

We have used WLAN (IEEE 802.11b) access points installed in three rail-
ways stations in The Netherlands to perform measurements on the received
signal powers6. In these three railway stations in total ten WLAN access
points were installed at convenient locations, varying in height between 2.5
to 14 meters. Using a WLAN receiver card with a laptop, we have measured
the received signal powers from the access points while moving in and around
these train stations at walking speed. We logged on the laptop the received
signal power and the distance to the access point at the rate of 1 sample per
second. After filtering unreliable data we had 9 hours of measurement data.
For position determination we used a GPS receiver with 10 meters position
accuracy 7.

6 WLAN equipment used in these measurements was installed within the frame
work of an cooperative research project by ProRail, a company responsible for
reliability, security and capacity of railways in The Netherlands.

7 We may expect that the measured position falls with 68% probability (one sigma
confidence interval) within the stated distance from the actual position. This
accuracy is achieved with the civilian code of GPS without selective availability
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Fig. 3.11. Coverage of a node in the center of a service area of size 10 × 10, for
different values of ξ.

Figure 3.12 shows as function of the distance to the access points the
measured signal powers. In this figure we have smoothed the data by taking
the average of the measured signal powers for all distances that fall within
intervals of 10 meters to the access points. We notice that there is a good match
between the measured area mean power values and the pathloss propagation
model, with the pathloss exponent value given in the figure.

We have also noticed that measured power values have an approximately
normal distribution around the expected area mean power values for each
distance, as the lognormal propagation model predicts. This can be seen from
Figure 3.13.

(S/A). S/A is an intentional degradation in the accuracy of GPS introduced
originally for civilian users. In the year 2000 the United States Department of
Defense decided to switch off selective availability.
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Our measurements roughly agree with the theoretical lognormal radio
propagation model. However, despite this match, based on these measure-
ments alone we may not conclude with certainty that radio propagation in
ISM bands for wireless ad-hoc networks can be modeled with a lognormal
radio model. Our measurements are unfortunately not extensive enough and,
foremost, not very reliable. There are several reasons for the unreliability of
the data:

1. The position determination method used by us is inaccurate. For reliable
measurements we need a position determination accuracy in the order of
1 meter or better. However due to budget restriction we were not able to
achieve this goal. One direct consequence of position inaccuracy is the high
values of the standard deviation for measured powers at close distances
to the access points (see Figure 3.12).

2. We have aggregated the data from all access points, without any correction
for the height of the antenna at each access point.

3. The WLAN card and the software used to log the data were unable to
measure beyond about -94 dBm power levels. Consequently, we were not
able to perform measurements at relatively longer distances to the access
points.

4. The structure of the areas where we have performed the measurements has
been very diverse, from heavily obstructed indoor environments without
line-of-sight to vast open spaces with line-of-sight. Putting measured date
from all these different areas together is a very crude way of statistical
analysis. Our measurement data is not extensive enough for statistical
analysis of each area type separately.

3.6 Chapter summary

In this chapter we described important characteristics of random graphs, lat-
tice graphs, scale-free graphs and the pathloss geometric random graphs to
position our model for ad-hoc networks. Our model for ad-hoc networks is
based on the medium scale signal power fluctuations in radio communications
and assumes that these power fluctuations have a lognormal distribution. We
have discussed why our lognormal geometric random graph model can be a
realistic way of modeling ad-hoc networks. For easy comparison we have sum-
marized some of the important characteristics of wireless ad-hoc networks and
different graph models discussed in this chapter in Table 3.1. As it can be seen
from this table, our lognormal geometric random graph model matches the
characteristics of wireless ad-hoc networks better than other models.

We have argued that our modeling of ad-hoc networks, based on the lognor-
mal assumption of power variations, is a step in the right direction for better
and more realistic modeling of ad-hoc networks. However, we emphasized at
the same time that more measurements are needed for better understand-
ing of radio channel characteristics in typical ad-hoc network environments
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Table 3.1. Comparison of network models.

link probability local correlation small-world
property

ad-hoc networks depends on the distance
and fading

yes, grows
weaker as fad-
ing increases

(1)

random graph distance independent,
same for any two nodes

no yes

regular lattice graph distance dependent,
same for any two adja-
cent nodes

no no

scale-free graph distance independent,
higher for links to
”hubs”

(2) yes (strongly)

pathloss geometric random graph distance dependent,
same for any two nodes
at the same distance

yes (3)

lognormal geometric random graph distance dependent, a
probabilistic function of
distance and ξ (4)

yes, grows
weaker as ξ
increases

depends on ξ (5)

Notes:
(1) If the increase in number of nodes is combined with an increase in the size of the service
area, network diameter increases and small-world property is not present. If only node density is
increased, network diameter does not change and ad-hoc network shows small-world property. In
both cases, with strong power fluctuation of radio signals (fading), the network diameter and the
mean hopcount tend to reduce due to the appearance of occasional long links.
(2) Scale-free graphs show strong clustering, but this is not necessarily because of local correlation.
For example, on the Internet two pages may have a link to the same popular website, while there
is no increased probability of these two pages to be linked as well. However, in social networks,
two acquaintances of a popular person may be introduced to each other by that person. Only in
the latter case, local correlation is present.
(3) Same as (1), except that there is no way to reflect effects of the fading.
(4) ξ is the ratio between the standard deviation of radio signal power fluctuations and the pathloss
exponent.
(5) Same as (1). Parameter ξ in this model reflects effects of the fading. For each number of nodes
and node density, network diameter and the mean hopcount reduce as ξ increases.

and frequencies. A set of measurements performed by us supports so far the
lognormal model, but has limited extend and accuracy.
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Degree in Ad-hoc Networks

In Chapter 3 is mentioned that random graphs have binomial (Poisson) degree
distribution (see (3.1)) and in scale-free networks degree distribution has a
power-law form, according to (3.7). In this chapter we focus on the mean
degree and degree distribution in wireless ad-hoc networks. As indicated in
Figure 2.2, the degree and the degree distribution in ad-hoc networks directly
affects connectivity of the networks.

4.1 Link density and expected node degree

In wireless ad-hoc network the actual set of connections, in contrast to random
graphs or scale-free networks, depends on the geometric distance between
nodes. An undirected geometric random graph with N nodes is denoted as
Gp(rij)(N), where p(rij) is the probability of having a link between two nodes
i and j (or j and i) at distance rij from each other. In this graph the expected
number of edges or links between nodes is by definition:

L =
N∑

i=1

N∑

j=i+1

p (rij) .

Let us assume that N nodes are uniformly distributed over a 2-dimensional
area with size Ω. To derive the average number of links over all possible
configurations, E[L], we have used a dissection technique and assumed that
area Ω is covered with m > N small squares (or placeholders) of size ∆Ω.
Assuming that ∆Ω is small enough to include only one node, the total number
of configurations that can be formed with N nodes over the whole area is

(
m
N

)
.

We denote these configurations by G1, G2, . . . , G(m
N) and the expected number

of links in these configurations by L1, L2, . . . , L(m
N). The average number of

links over all possible configurations is by definition the number of links in each
configuration multiplied by the probability of occurrence of that configuration:

41
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E[L] = Pr [G1] L1 + Pr [G2] L2 + .... + Pr
[
G(m

N)
]
L(m

N)

=
(m

N)∑

k=1

Pr [Gk]

⎡

⎣
N∑

i=1

N∑

j=i+1

p (|∆Ωk,i − ∆Ωk,j |)
⎤

⎦ .

Here ∆Ωk,x indicates the position of the placeholder containing node x in
configuration k, and |∆Ωk,i − ∆Ωk,j | is the distance between two nodes i and
j in configuration k. This formula can be simplified and rearranged by taking
the following into account:

• N nodes can be placed in m possible placeholders in
(
m
N

)
distinct ways. If

nodes are uniformly distributed over area Ω, all configurations are equally
probable with probability

(
m
N

)−1.
• In the summation over all possible configuration possibilities, each node

could be positioned in any of the m possible positions. Therefore, the sum
of the link probabilities p(.) over all possible links between N nodes over
all possible configurations, can be written as summation of link proba-
bilities p(.) over all combination of placeholders themselves. Further, we
notice that in placing N nodes in m placeholders, a link between any two
placeholders i and j occurs exactly in

(
m−2
N−2

)
configurations (if positions

i and j are occupied, there are N − 2 nodes to be positioned in m − 2
places, and this can be done in

(
m−2
N−2

)
ways). Considering these points, the

formula for E[L] can be rewritten as:

E[L] =
(

m − 2
N − 2

) m∑

i=1

m∑

j=i+1

p (|∆Ωi − ∆Ωj |)
(

m

N

)−1

=
N(N − 1)
m(m − 1)

m∑

i=1

m∑

j=i+1

p (|∆Ωi − ∆Ωj |)

=
N(N − 1)
m(m − 1)

m∑

i=1

m∑

j=i+1

p (rij) ,

where rij is the distance between two placeholders i and j. We mention here
that the above double summation can be simplified in several ways to make
numerical computations faster. One method is to rearrange and regroup terms
so that summations will be over the number of nodes, rather than number of
placeholders. An integral expression is also possible [73].

Link density L is the ratio between E[L] and Emax = N(N − 1)/2, the
maximum number of links in a full-mesh network:
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L =
E [L]
Emax

=
2

m(m − 1)

m∑

i=1

m∑

j=i+1

p (rij) . (4.1)

From this formula we see that link density is independent of the number
of nodes in the network. The link density depends only on the ”strength of
connectivity” (defined by the function p(r)) over the area of consideration. In
other words, the link density is a measure that indicates how well different
parts of the area can be reached from other parts. Knowing the expected
number of links in the network, the mean degree, E[d], over all nodes is by
definition:

E[d] =
2E[L]

N
= (N − 1)L. (4.2)

Formulas (4.1) and (4.2) are valid for any geometric random graph
Gp(rij)(N). For our lognormal geometric random graph model p(rij) is given
by (3.13). Assuming normalized distances and substituting p(rij) in (4.1) with
(3.13) provides the formula for link density with lognormal radio model, Llg:

Llg =
1

m(m − 1)

m∑

i=1

m∑

j=i+1

[

1 − erf
(

3.07
log (r̂ij)

ξ

)]

, (4.3)

where r̂ij is the normalized distance between two placeholders i and j in the
service area of the ad-hoc network. The service area of the ad-hoc network is
the whole area where nodes are uniformly distributed. Figure 4.1 shows the
calculated values1 of the link density found using (4.3) for different sizes of
square-shaped service areas and for different values of ξ. Important is to notice
that when the size of the service area increases, the link density tends to zero.
Further, we see that the link density is higher for larger values of ξ. From
a radio propagation point of view, a higher value of ξ means more signal
power fluctuations that results into higher probability of having occasional
links with nodes at farther distances. As expected, this translates itself into a
higher value of the link density over the service area.

Having a formula for the link density; the expected node degree in an
ad-hoc network with lognormal radio model follows directly from (4.2):

E[d]lg = (N − 1)Llg (4.4)

Table 4.1 shows some values of the link density and the mean node de-
gree found using (4.3), respectively, (4.4); and compares them with values
found through simulations. The simulation program used for verification of
computed results, spreads N nodes uniformly over a square-shaped area of
given size, and establishes links between node pairs using (3.13). The simu-
lated value of the link density in each case is the ratio of the established links

1 Wherever the link density is numerically calculated for an area of size Ω, we have
assumed that ∆Ω is an area of normalized length 0.1 by normalized width of 0.1.
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Fig. 4.1. Link density for square-sized areas and different values of ξ.

Table 4.1. Calculated versus simulated values of link density and average node
degree based on the lognormal geometric random graph model. In all simulations
N = 2000.

area ξ calculated Llg calculated E[d]lg simulated Llg simulated. E[d]lg
5×5 0 0.1046 209.04 0.1051 210.02
5×5 3 0.1820 363.73 0.1823 364.42
10×10 0 0.0288 57.57 0.0287 57.41
10×10 3 0.0606 121.14 0.0610 122.00
20×20 0 0.0074 14.72 0.0074 14.85
20×20 3 0.0175 34.98 0.0178 35.52
50×50 0 0.0012 2.34 0.0012 2.45
50×50 3 0.0030 6.00 0.0030 6.08

to the maximum number of possible links. The simulated value of the mean
node degree is the mean value of the degree found for all nodes. It can be
seen from Table 4.1 that there is a good match between the simulated and
the calculated results.

4.2 Degree distribution

In the previous section we calculated the link density and the expected node
degree with the lognormal geometric random graph model and verified by sim-
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ulation that (4.3) and (4.4) provide accurate results, regardless of the size of
the service area. In this section we concentrate on the degree distribution. For
random graphs we know that by definition the degree distribution is binomial.
The question considered in this section is whether the degree distribution in
ad-hoc networks is binomial as well.

When nodes are uniformly distributed over the service area, for any node
i with an arbitrary but fixed shape of coverage area the degree distribution is
binomial with a mean value that depends on the size of the coverage area of
node i. This property follows directly from the uniform distribution of nodes
and can be verified easily. An example with a star-shaped coverage area is
shown in Figure 4.2.

This observation implies that degree distribution in an ad-hoc network
must be binomial as well, even if the shape of the coverage area of any node
may be very irregular. However, in an ad-hoc network there are two factors
that make the situation more complex. At the first place because the coverage
area is determined by a probability function, the coverage area of each node
does not have a fixed shape and can vary from node to node. Secondly, for
nodes close to the borders of the service area, the coverage area is truncated
physically by border limits of the service area. We will call the first factor
coverage fluctuations, and the second factor border effect. The border effect
reduces the expected number of neighbors for nodes in the border area in
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Fig. 4.3. Links between nodes in a rectangular area (figure on the left), and new
links that appear when toroidal distances are considered (figure on the right).

comparison to nodes situated more towards the center of the service area.
Taking these two aspects into account, what is the distribution of node degree
in an ad-hoc network when we look at all nodes collectively?

We have investigated this question through simulations, using our geomet-
ric random graph model, for different network sizes, network densities and ξ.
The simulation method is straightforward. In each simulation we distribute
N nodes over an area of x × y (normalized values). Then we establish links
between nodes using p(r̂ij) according to (3.13) and calculate the degree distri-
bution for all nodes. Our main conclusion based on these simulations is that
in wireless ad-hoc networks the node degree can be considered to be bino-
mially distributed, with a mean value given by (4.4), when the border effect
is negligible. The coverage fluctuations do not seem to distort the binomial
distribution of the node degree. In the following two paragraphs we elaborate
this conclusion.

Effect of coverage fluctuations

To be able to investigate the effect of coverage fluctuations separate from the
border effect, the area can be considered as a torus with toroidal distances
between the nodes. This eliminates all borders, and consequently the border
effects. A torus can be constructed from a rectangle by gluing both pairs of
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opposite edges together with no twists. The resulted torus is embedded in
three-dimensional space and is shaped like a donut. Figure 4.3 compares the
possible links between nodes when toroidal distances are assumed with the
case that only Euclidian distances over the rectangular area are allowed. In
the former case there exist simply no border nodes. Our simulation results
showed consistently that regardless of the network size, the network density
and the value of ξ, the degree distribution is binomial when toroidal distances
are used.

Another way of canceling the border effects is to focus on degree distribu-
tion for nodes in the inner region of the service area. The inner region of a
rectangular service area of size x×y is a rectangle with size (x−2l)× (y−2l).
The service area and the inner region are co-centered rectangles. To exclude
the border effect, l should be chosen in such a way that only a negligible por-
tion of the coverage area of any node in the inner region could fall outside
the service area. In our simulation for each value of ξ we chose l to be the
distance where the link probability drops to 5% (see (3.13)). Our simulation
results showed that regardless of the network size, the network density and
the value of ξ, the degree distribution for inner nodes is binomial.

The border effect

When we look at all nodes in the service area with some nodes in the border
regions and Euclidian distances between nodes, under certain circumstances
the border effect could be considered negligible. When the border effect is
negligible, the degree distribution is by good approximation binomial. The
border effect is negligible if:

1. the service area is much larger than coverage area of a single node, and
2. the node density is low.

A relatively large service area is equivalent to a low link density. Therefore,
the combined effect of conditions 1 and 2 is reflected in the product of the link
density and the number of nodes; in other words, in the value of the mean
node degree (see (4.4)). Considering this, we can say that the border effect is
negligible and the degree distribution is binomial when the mean node degree
is low. In the remainder of this section we justify this statement and try to
quantify conditions for its validity through simulations.

Figure 4.4 shows the degree distribution found through simulations for
ξ = 3 and different number of nodes uniformly distributed over an area of
20 × 20. Figure 4.5 shows another set of simulation results found for N =
1000 and different values of ξ. In both figures the solid lines represent the
actual degree distribution, while in each case a dotted line shows a binomial
distribution with the same mean value as the actual degree distribution. We
have used the Kolmogorov-Smirnov test with 5% significance level [74] to
verify the hypothesis that the actual degree distribution is binomial. The
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Kolmogorov-Smirnov tests show that for the low values of mean node degree,
E[d], the degree distribution is binomial with high probability. As the mean
node degree increases, the probability of accepting the hypothesis reduces.
However, only in cases e, f , k and l in Figures 4.4 and 4.5, where the mean
node degree is higher than 18, the hypothesis of binomial distribution could be
rejected. Other simulation results for different sizes and shapes of the service
area (not presented here) are consistent with this result: in all cases where
nodes are uniformly distributed over the service area, the distribution of the
node degree can be considered to be binomial if the mean node degree is low
(lower than 18 for square-shaped areas).

In Chapter 6 we will discuss that knowing the exact degree distribution
is relevant in the study of connectivity in ad-hoc networks. Without going
into details at this stage we mention that the transition from disconnected to
connected networks takes place at low values of the mean node degree ([70],
[75], [65]). Therefore, in the regions close to the transition between connected
and disconnected networks, it is save to assume that the degree distribution
is binomial. In practice too, the mean node degree is unlikely to be high in
wireless ad-hoc networks, personal area networks or sensor networks. At the
first place the transmission power of nodes forming these networks is low
which limits the geographical size of the coverage area, and consequently the
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Fig. 4.5. Degree distribution found through simulation for different values of ξ,
compared with a binomial distribution having the same mean value. Service area in
all cases is 20 × 20 and N = 1000.

number of neighboring nodes. Secondly, because of medium sharing in these
networks, a high node degree would result into a very low throughput per
node which is an undesired situation and would be avoided.

4.3 Chapter summary

We have studied three topics in this chapter, link density, expected node
degree and degree distribution. Main results regarding these topics are sum-
marized below.

Link density: It has been shown that link density is a function of the area
size and the parameter ξ. When area size tends to ∞, link density tends
to 0, which is a direct consequence of that fact that in ad-hoc networks
links are distance dependent. Further, it has been shown that the link
density is higher for larger values of ξ. The minimum link density value
for each area size appears for ξ = 0, which corresponds to the pathloss
model of radio propagation. We have found an analytic expression for the
link density in ad-hoc network (see (4.3)).

Expected node degree: Expected node degree in ad-hoc networks is found
by multiplying the link density with the number of nodes forming the
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network (see (4.2) and (4.4)). Because link density is minimum for the
pathloss radio model, we may conclude the pathloss model is the most
pessimistic model for estimation of the mean degree in ad-hoc networks.

Degree distribution: In ad-hoc networks degree distribution can be considered
to be binomial when the density of nodes is low and the area size is large
in comparison to the maximum link distance. By the maximum link dis-
tance we mean the length of the distance over which two nodes could be
connected with a non-negligible probability (for example, p(r̂ij) � 0.05).
Both conditions are required to avoid the so-called border effect. The com-
bined effect of these two conditions is a low value for the mean degree.
We have shown that when E[d] � 18, the degree distribution can be con-
sidered to be binomial. We recall from Chapter 3 that degree distribution
is also binomial in random graphs. It is interesting to see that despite
the totally different forms of behavior, both the random graph and the
geometric random graph have binomial degree distribution. It should be
noticed however that binomial degree distribution in geometric random
graphs is conditional on uniform distribution of nodes over the service
area. If nodes are not uniformly distributed over the service area, degree
distribution will not be binomial. In this book we are always assuming
uniform distribution of nodes.
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Hopcount in Ad-hoc Networks

In this chapter we focus on the mean hopcount and hopcount distribution in
ad-hoc networks. Hopcount is a measure for the number of relay stations that
a data packet or a routing message is expected to pass through while traveling
between arbitrary source and destination nodes. Therefore understanding the
hopcount is important for estimation of the relay traffic, routing overhead and
delay in ad-hoc networks. As indicated in Figure 2.2, hopcount is needed for
the study of the capacity in ad-hoc networks. Details of the influence of the
hopcount on the network capacity are considered in Chapter 10.

In this chapter we will use our geometric random graph model of ad-hoc
networks to study the effects of radio propagation conditions, area size and the
number of nodes on the expected hopcount and the hopcount distribution in
ad-hoc networks. It is obvious that in a sparse network or a network consisting
of a few isolated clusters, the mean hopcount and hopcount distribution are
not descriptive and meaningful values for the entire network. In this chapter
whenever hopcount is calculated or expressed in formulas it is assumed that
the underlying network is connected or almost connected1.

5.1 Global view on parameters affecting the hopcount

In the description of our geometric random graph model for ad-hoc networks
we mentioned already that when ξ = 0 an ad-hoc network tends to behave
like a regular 2-dimensional lattice network. When the value of ξ increases,
ad-hoc network starts to deviate from a regular lattice model. Links over
larger distances may appear and links over short distances may disappear. In
other words, for higher values of ξ an ad-hoc network tends to show stronger
small world property, resembling to some degree a random graph. Based on
this observation we expect that the hopcount in ad-hoc networks is directly
affected by the value of ξ.

1 Mathematical definition of ”almost connected” is given in Chapter 6.
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The mean hopcount is the average distance between any pair of nodes,
or the average path length in the network. The mean hopcount in a random
graph Gp(N) is by approximation E[h] � log(N)/ log(E[d]), where N is the
number of nodes and E[d] is the expected node degree in the random graph
(see (3.2)).

In contrast to random graphs where links are completely uncorrelated and
relative node positions irrelevant, an extremely regulated graph in two di-
mensions is a rectangular lattice. In a dense 2-dimensional rectangular lattice
graph, apart from border nodes, each node has a constant degree of 4 (see
(3.5) for the mean degree taking all nodes into account). Further, neighboring
nodes are all at the same distance from each other. We call the distance be-
tween neighboring nodes the granularity of the lattice. The size of the lattice
is the number of nodes in the lattice. The mean hopcount is in a 2-dimensional
rectangular lattice of the size N = m × n is m+n

3 (see (3.6)). We see that for
connected graphs, the mean hopcount in a lattice is higher than the mean
hopcount in a random graph of the same size. In this chapter we show that
the mean hopcount in an ad-hoc network can vary between the expected val-
ues for a lattice network and a random graph, depending on the value of ξ
and the size of the service area.

5.2 Analysis of the hopcount in ad-hoc networks

For study of the hopcount in ad-hoc networks we have used simulations. In
each simulation scenario N nodes are uniformly distributed over a service area
with a certain length and width. Then we have formed links between nodes
using the link probability (3.13). In the resulted graph we have calculated
the hopcount between any two connected node pairs and have derived the
hopcount distribution from it. In all simulation cases the size of the service
area and the number of nodes have been chosen in such a way that the entire
network of nodes has a high probability of connectivity. Connectivity and
conditions for that are studied in detail in Chapter 6. At this stage it suffice
to mention that the value of N has been chosen high enough for a giant
component [65] to appear. This condition is required when we want to relate
the calculated hopcount values to the provided value of N . If the node density
is so low that the network consists of scattered small clusters, the hopcount
calculation is not reliable. Our findings about the hopcount in ad-hoc networks
are listed below.

• Hopcount in ad-hoc networks is strongly affected by ξ. Figure 5.1 visual-
izes the effect of the variation in ξ on the topology of an ad-hoc network.
When ξ = 0, only nodes at distances less than the normalized distance
1 are connected. As ξ increases, the probability of having a link between
two nodes at farther distances increases as well. Consequently, the mean
hopcount reduces. Figure 5.2 shows the hopcount distribution correspond-
ing to the subplots in Figure 5.1. At low values of ξ, the mean hopcount



5.2 Analysis of the hopcount in ad-hoc networks 53

0 5 10 15 20
0

5

10

15

20

W
id

th
 (

n
o

rm
al

iz
ed

)

ξ =0.00

0 5 10 15 20
0

5

10

15

20
ξ =1.00

0 5 10 15 20
0

5

10

15

20

Length (normalized)

W
id

th
 (

n
o

rm
al

iz
ed

)

ξ =2.00

0 5 10 15 20
0

5

10

15

20

Length (normalized)

ξ =3.00

Fig. 5.1. Nodes and links in an ad-hoc network for different values of ξ. In all
subplots N = 1000, and service area is 20 × 20.

is close to the mean hopcount in a lattice with the same length and the
same width as the service area and granularity 1. When ξ increases,
the mean hopcount tends more towards the mean hopcount in a random
graph with the same number of nodes and the same link probability. Of
course even for the highest value of ξ (about 3 as discussed in Section
3.4.3) we may not expect a hopcount value exactly the same as in random
graphs, because in ad-hoc networks the distance dependency of links is
always a fact. Only when the length and the width of the service area are
in the same order of magnitude as the maximum link distance (the metric
length of the distance over which two nodes could be connected with a
non-negligible probability), we may observe a low mean hopcount value
close to the mean hopcount in a random graph.

• Despite the strong effect of ξ on the hopcount in ad-hoc networks, it should
not be forgotten that the mean hopcount and hopcount distribution also
depend on the area size. For any value of ξ, the mean hopcount increases
when the size of the service area increases as well (see Figure 5.3). In other
words, when the increase in the network size is combined with an increase
in the size of the service area, the diameter of the networks increases.



54 5 Hopcount in Ad-hoc Networks

0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

0.06

P
r[

h
=x

]

ξ = 0.00

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
ξ = 1.00

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Number of hops, h

P
r[

h
=x

]

ξ = 2.00

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Number of hops, h

ξ = 3.00

E[h] = 12.25
lattice: 14.00
Gp(N): 3.25

E[h] = 6.28
lattice: 14.00
Gp(N): 2.83

E[h] = 3.58
lattice: 14.00
Gp(N): 2.41

E[h] = 14.93
lattice: 14.00
Gp(N): 3.45

Fig. 5.2. Hopcount for different values of ξ. In all subplots N = 1000, and service
area is 20 × 20. The mean hopcount is indicated on each subplot for the ad-hoc
network, a lattice of size 21 × 21, and a random graph with 1000 nodes and the
same link probability as in the ad-hoc network.

Under this condition the ad-hoc network does not show the small-world
property.

• The hopcount in ad-hoc networks for low values of ξ depends only on the
size of the service area and not on the number of nodes. In Figure 5.4
we have plotted the hopcount distribution over the same area size with
different number of nodes. We see that the hopcount distribution and
the mean hopcount is not affected by changes in the number of nodes.
Under this condition we see that an increase in the network size does not
increase the hopcount (or diameter) of the network. This means that ad-
hoc networks show the small-world property, when only the node density
increases.

We had some discussions in Chapter 3 about the small-world property in
ad-hoc networks. We said that wireless ad-hoc networks are expected to show
small-world property, like random graphs, when the node density increases
but the service area size does not change. On the other hand, wireless ad-hoc
networks are similar to lattice graphs and do not show small-world property
when an increase in the network size (number of nodes) is the result of increas-
ing the service area size (see also Table 3.1). We see here how our lognormal
geometric random graph model with parameter ξ captures this dual behavior



5.2 Analysis of the hopcount in ad-hoc networks 55

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of hops, h

P
r[

h
=x

]

Hopcount distribution 1000 nodes, area size = 20 x 20

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Number of hops, h

P
r[

h
=x

]

Hopcount distribution node density 2.50, ξ = 2.00

ξ = 0.00 → E[h] = 16.21
ξ = 1.00 → E[h] = 12.25
ξ = 2.00 → E[h] = 6.48
ξ = 3.00 → E[h] = 3.54

area size 10 x 10 → E[h] = 4.07
area size 15 x 15 → E[h] = 5.08
area size 20 x 20 → E[h] = 6.48
area size 25 x 25 → E[h] = 7.77
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5.3 Chapter summary

In this chapter we have shown that the hopcount behavior in ad-hoc networks
for low values of ξ is similar to the hopcount in rectangular lattice networks
with the same length and the width as the service area of the ad-hoc network.
When ξ increases, the mean hopcount and the network diameter are reduced
due to the presence of occasional ”long links” between nodes. The hopcount
in ad-hoc networks increases when the service area increases in size. Further,
hopcount is independent of the number of nodes in the network (small-world
property) when we increase node density over a given service area.

We have observed that the hopcount in ad-hoc networks is a function
of the parameters ξ, N , and the service area size. We have clear picture of
how the hopcount is affected by a change in each of these parameters. This
is sufficient for the rest of our research concerning interference and capacity
determination of ad-hoc networks. Finding an exact analytic formula showing
the dependency of the hopcount on ξ, N and the service area size is certainly
useful, although we expect this to prove to be a challenging task. However,
for a simplified model of ad-hoc networks where position of nodes are fixed
to the vertices of a hexagonal lattice, we have found an algorithm to produce
the exact hopcount distribution. This model is described in Chapter 9. The
algorithm to produce the exact hopcount distribution is given in Section 10.4.1
of Chapter 10.
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Connectivity in Ad-hoc Networks

This chapter is about mathematical modeling and better understanding of
one of the most important fundamental properties in ad-hoc networks, the
connectivity. From a practical point of view, connectivity is a prerequisite to
providing reliable applications to the users of a wireless ad-hoc network. To
achieve a fully connected ad-hoc network there must be a path from any node
to any other node. The path between the source and the destination may con-
sist of one hop (when the source and the destination are neighbors) or several
hops. When there is no path between at least one source-destination pair the
network is said to be disconnected. A disconnected network may consist of
several disconnected islands or clusters. The largest cluster in the network is
called the giant component [34]. It should be mentioned that there are two
ways of looking at connectivity in a graph or a network: vertex connectivity
and edge connectivity. To give a simple example, consider a telephone net-
work. The vertex connectivity is related to the smallest number of switching
stations that must be damaged in order to separate the network. The edge
connectivity is related to the smallest number of wires that need to be cut to
accomplish the same thing.

Connectivity in ad-hoc networks has been studied previously in various
papers (see e.g. [66]). However, in this book we have used for the first time the
lognormal radio propagation model and our geometric random graph model
(see Section 3.4.3) to study connectivity. Our radio model takes statistically
into account the dynamics of radio signal power variations. These variations
are unavoidably caused by obstructions and irregularities in the surroundings
of the transmitting and the receiving antennas. Therefore, this radio model is
more realistic than the static and solely on distance dependent models that
are commonly used to model wireless ad-hoc networks. We show here that
these variations strongly affect the connectivity behavior of the network.

We regard connectivity to be independent of traffic load in the network,
although some authors (see e.g. [76]) have preferred to see connectivity as a
condition related to the total traffic load in the network. In our approach,
on the physical layer connectivity between nodes is predicted by the radio
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model. Whether two connected nodes can communicate with each other at any
given moment in time depends of course on interference conditions which are
directly linked to the traffic load and simultaneous communications between
other nodes in the network. Due to interference, communication between two
connected nodes may drop to lower speeds or even become impossible at
certain times. However, in these cases we say that the link capacity is reduced,
instead of saying that the probability of connectivity between these two nodes
is decreased. In other words, we consider interference as a capacity-affecting
factor and not as a connectivity issue.

In this chapter we will first provide an overview of theoretical published
results for the connectivity in random graphs, and in pathloss geometric ran-
dom graphs. Subsequently, we will show that our lognormal geometric random
graph model allows us to refine these connectivity theorems for wireless ad-hoc
networks.

6.1 Connectivity in Gp(N) and Gp(rij)(N) with pathloss
model

For the study of connectivity we consider a wireless ad-hoc network at any
instant in time as a graph with fixed topology. Two paths in a graph are said
to be independent if any node common to both paths is an end-node of both
paths. A graph is said to be k-vertex-connected if for each pair of nodes there
exist at least k mutually independent paths connecting them [66]. Another
equivalent definition [35] is that a graph is k-vertex-connected if and only if
there is no set of k−1 vertices whose removal would disconnect the graph. The
vertex-connectivity κ(G) of a graph is the maximum k such that the graph is
k-vertex-connected. Similarly, a graph is k-edge-connected if and only if there
is no set of k − 1 edges whose removal would disconnect the graph [35]. The
edge-connectivity κ(G) of a graph is the maximum k such that the graph is k-
edge-connected. There is a close relationship between the vertex-connectivity,
edge-connectivity and the minimum degree dmin in a graph [35]:

κ(G) ≤ κ(G) ≤ dmin.

In the literature, as well as in this book, by the term connectivity always
vertex-connectivity is meant.

Connectivity has been studied in many publications for random graphs as
well as pathloss geometric random graphs. Here we give an overview of two
main theorems with relation to the connectivity.

Theorem 6.1. If we start with a graph on N vertices and an empty edge
set and add edges randomly and independently one by one until having m

edges, the graph almost surely1 becomes 1-connected when m ≥ N log(N)
2 +

1 We say that a graph has some property Q almost surely (a.s.) or with high prob-
ability (whp) if the probability it has Q tends to one as N tends to infinity.
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O(N). Considering that in Gp(N) two nodes are connected with probability
p � m/

(
N
2

)
, we can say that for a random graph to be 1-connected there must

hold:

p ≥ log(N)
N

a.s. (6.1)

Theorem 1 dates from the pioneering work of Erdös and Rényi [42] on
random graphs where they considered the Gp(N) model to study the threshold
for connectivity in graphs. While (6.1) holds for random graphs, in [65] and [66]
it is shown that this result is also valid for pathloss geometric random graphs,
in any dimension higher than one (but not for one-dimensional graphs).

Intuitively one may see that the connectivity in wireless ad-hoc networks
depends on the number of nodes per unit area and on the transmission range of
wireless devices. Increasing the density of nodes or increasing the transmission
power of a radio node will increase the node degree. Based on this deduction,
it is not surprising to see that the second theorem of connectivity relates
connectivity to the node degree.

Theorem 6.2. In a random graph of N nodes if edges are added one by one
to the empty graph in an order chosen uniformly at random from the

(
N
2

)
!

possibilities, then almost surly the resulting graph becomes k-connected when
it achieves a minimum degree of k. In other words, for large N ,

Pr [G is k-connected] = Pr [dmin ≥ k] a.s. (6.2)

where dmin is the minimum degree per node.

Theorem 2 is proved for random graphs in [34]. In [67] and [66] it is proved
that this theorem is also valid for the pathloss geometric random graphs, in
any dimension higher than one when Pr [dmin ≥ k] is almost 1.

These two theorems of connectivity are not conflicting theorems for ran-
dom graphs. Here we prove for random graphs, that for large N , Pr [Gp(N) is
1-connected] � 1 if p > log(N)/N , and Pr [Gp(N) is 1-connected] � 0 if
p < log(N)/N .

Denote by f(p) = Pr [Gp(N) is 1-connected]. Because of binomial degree
distribution in random graphs and independence of the links, this probability
is computed as (see (3.1)):

f(p) = Pr [dmin ≥ 1 in Gp(N)]

=

[
N−1∑

k=1

(
N − 1

k

)

pk (1 − p)N−1−k

]N

= [1 − Pr[dmin = 0]]N

=
[
1 − (1 − p)N−1

]N
. (6.3)
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According to (6.3), f (p) is always one for fixed 0 < p < 1 and large N .
Therefore, the asymptotic behavior of Pr [Gp(N) is 1-connected] requires to
investigate the influence of p as function of N . The order of f (pN ) for large
N is:

f(pN ) = exp
(
N log

(
1 − (1 − pN )N−1

))

= exp

⎛

⎝−N

∞∑

j=1

(1 − pN )jN−j

j

⎞

⎠

= exp

⎛

⎝−N(1 − pN )N−1 − N

∞∑

j=2

(1 − pN )jN−j

j

⎞

⎠

= e−N(1−pN )N−1

⎛

⎝1 + O

⎛

⎝N

∞∑

j=2

(1 − pN )(N−1)j

j

⎞

⎠

⎞

⎠ .

If we define cN � N ·(1 − pN )N−1, then the order term O
(
N
∑∞

j=2
(1−pN )(N−1)j

j

)
=

O
(
N
∑∞

j=2
cj

N

jNj

)
vanishes for large N provided we choose cN = O

(
Nβ
)

with

β < 1
2 . For large N , we thus have that f(pN ) = e−cN ∼ e−ANβ

which tends to
0 for 0 < β < 1

2 and to 1 for β < 0. Hence, the critical exponent where a sharp
transition occurs is β = 0. In that case, cN = c (a real positive constant) and

pN = 1 − exp
(

log c

N − 1
− log N

N − 1

)

=
log N

N
+ O

(
log c

N

)

.

In summary,

f(p) −→ 0
1

if p < log(N)/N
if p > log(N)/N ,

with a transition region around log N
N of width of O( 1

N ).

In the next section we will investigate connectivity in wireless ad-hoc net-
works by using our geometric random graph model explained in Section 3.4.3.
As mentioned before, this model is more realistic than the pathloss geometric
random graph model. We present results obtained through simulations. We
believe that our simulation results provide new insights into the theory of
connectivity in wireless ad-hoc networks.

6.2 Connectivity in Gp(rij)(N) with lognormal model

Our focus will be on 1-connectivity. Higher orders of connectivity are not
considered at this moment. For the study of connectivity in ad-hoc networks
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based on our geometric random graph model we have used simulations. The
simulation program distributes N nodes uniformly over a square area and es-
tablishes links between node-pairs using the probability function (3.13). The
service area of the ad-hoc network is the whole area where nodes are uni-
formly distributed. In the resulting graph for each simulation run we check the
1-connectivity and store information regarding the number of clusters (compo-
nents) in the graph, the mean component size, the total number of components
and the degree distribution. We have performed simulations with N = 250,
500 and 1000. For each value of N , results are gathered for ξ = 0, 1, 2, 3 and
different values of the area size. Changing the area size changes the expected
values for the node degree and allows us to study connectivity as function of
the mean degree. For each unique combination of the area size, ξ and N we
have repeated simulations with 500 independent network configurations.

Two different procedures can be used for checking 1-connectivity [31]:

1. The first procedure chooses a node at random and uses a simple flooding
algorithm to tag all nodes belonging to the same cluster. This procedure
is repeated for all untagged nodes until no untagged nodes remain in
the graph. If the largest cluster found in this way contains all nodes,
the network is 1-connected. In the process of checking for 1-connectivity,
this procedure provides us the exact size of all clusters in the graph. By
definition the largest cluster in the graph is called the giant component.
The size of each cluster is defined as the ratio of the number of nodes
in that cluster to the total number of nodes in the network. Similarly,
the giant component size is the ratio of the number of nodes in the giant
component to the total number of nodes forming the network.

2. The second procedure for checking 1-connectivity uses the N × N Lapla-
cian of G. The Laplacian [35] is the difference between the diagonal node
degree matrix, in which element (i, i) is degree of the node i; and the adja-
cency matrix, in which element (i, j) is one or zero depending on whether
a link does or does not exist between nodes i and j (diagonal elements of
the adjacency matrix are zeros). Eigenvalues of the Laplacian are real pos-
itive numbers. The number of zero eigenvalues of the Laplacian is equal
to the number of cluster in G [35]. This is a fast and powerful method
for checking connectivity of a graph. For a connected graph we have only
one zero eigenvalue. The second smallest eigenvalue of the Laplacian, al-
though not considered further in this book, is a beautiful representative
of the strength of the connectivity and robustness in G. The larger this
number, the more difficult it is to disconnect the graph by taking out
edges or vertices [35, section VIII.2].

We have used the first procedure to gather simulation results, while the
second procedure is applied consistently to verify reliability of the first proce-
dure. Results of both procedures matched always perfectly with each other.

Figure 6.1 shows a part of the simulated results for 500 nodes. Each subplot
corresponds to a different value of ξ. In each subplot in this figure we have



62 6 Connectivity in Ad-hoc Networks

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
N = 500, ξ = 0.0

prob. of 1−connectivity
prob. of p >=log(N)/N
prob. of min. degree >= 1
giant component size
prob. min. degree >= 1 (binomial)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
N = 500, ξ = 1.0

prob. of 1−connectivity
prob. of p >=log(N)/N
prob. of min. degree >= 1
giant component size
prob. min. degree >= 1 (binomial)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

mean degree

N = 500, ξ = 2.0

prob. of 1−connectivity
prob. of p >=log(N)/N
prob. of min. degree >= 1
giant component size
prob. min. degree >= 1 (binomial)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

mean degree

N = 500, ξ = 3.0

prob. of 1−connectivity
prob. of p >=log(N)/N
prob. of min. degree >= 1
giant component size
prob. min. degree >= 1 (binomial)

Fig. 6.1. Simulated results for different values of ξ showing: the probability of 1-
connectivity, the probability of p exceeding the log(N)/N threshold, the probability
of the minimum node degree being more than or equal to one, and the giant compo-
nent size as fraction of the total number of nodes. For comparison reasons, we have
drawn on each graph the probability of minimum degree being more than or equal
to one for a binomial degree distribution.

shown as function of the node’s mean degree the following data obtained
through simulations:

1. The probability of 1-connectivity.
2. The probability of p exceeding the log(N)/N threshold, which allows us

to check the accuracy of the first theorem of connectivity by comparing
this data with the first set of data mentioned above.

3. The probability of the minimum node degree being more than or equal
to 1, which allows us to check the accuracy of the second theorem of
connectivity by comparing this data with the first set of data mentioned
above.

4. The giant component size.

The dotted line without markers in each subplot is added for comparison
reasons and shows, as function of the mean node degree, the probability of
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1-connectivity (or the probability of the minimum degree being more than or
equal to 1) in a random graph with N nodes, according to (6.3).

The first conclusion we can draw after analyzing simulation data is that
our results indeed comply with both theorems of connectivity for the pathloss
geometric random graph model (in other words, when ξ = 0). However we can
add more important additional details to refine the connectivity theorems:

• In all simulated cases, the first theorem of connectivity based on log(N)/N
threshold predicts an almost surely connected network at those values of
the mean degree where the actual probability of 1-connectivity is rather
low (about 0.2 or less in subplots of Figure 6.1). Is this theorem too opti-
mistic? We can examine this question by looking at the size of the giant
component. For example, in Figure 6.1 for ξ = 0 the giant component size
at the threshold where p exceeds log(N)/N is 0.987. In another set of sim-
ulation with 1000 nodes (not shown in this chapter), the giant component
size at this threshold point for ξ = 0 was 0.998. This means that from
the 1000 nodes, only 2 nodes did not belong to the giant component. The
giant component size at the threshold point where this theorem predicts
”almost surely” connectivity increases as N → ∞, and this is exactly what
the theorem stands for.

• In simulated cases with the low values of ξ the actual probability of connec-
tivity coincides with the probability of dmin ≥ 1 only when Pr [dmin ≥ 1]
is almost 1. This complies with the second theorem of connectivity for the
pathloss geometric random graphs. However, when the ξ increases, these
two lines merge at lower values of Pr [dmin ≥ 1]. For example, for ξ = 3
these two lines are overlapping each other virtually for the entire range of
the mean degrees. This behavior was expected from the second theorem
of connectivity only for random graphs. We can conclude that when ξ in-
creases, the increase in the long-distance connectivity probability together
with the reduction of the short-distance connectivity probability reduces
the correlation between links. As a result, the geometric random graph ap-
proaches the random graph behavior, and the probability of 1-connectivity
equals the probability dmin ≥ 1 for all values of Pr [dmin ≥ 1].

• Comparing the Pr [dmin ≥ 1] in ad-hoc networks with the Pr [dmin ≥ 1] in
random graphs (the dotted line in subplots of Figure 6.1) suggests that ad-
hoc networks need a higher value of the mean degree to achieve the same
probability of not having any isolated nodes. This is due to the existence
of nodes around the borders of the service area. If we eliminate the border
effect by considering toroidal distances rather than Euclidian distances (as
described in Chapter 4) this difference diminishes. Figure 6.2 shows one
set of simulated data gathered with toroidal distances. In this figure, the
line indicating Pr [dmin ≥ 1] in random graphs overlaps with the line for
Pr [dmin ≥ 1] in ad-hoc networks.

• As mentioned in Chapter 5, the increase in long-distance connectivity
probability affects the hopcount in the network. In that chapter we al-
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Fig. 6.2. One set of simulated results similar to Figure 6.1 but with toroidal dis-
tances.

ready stated that the mean hopcount in an ad-hoc network can vary be-
tween the expected values of the hopcount in a lattice network and in a
random graph, depending on the value of ξ. As ξ increases, the probability
of having a link between two nodes at farther distances increases as well.
Consequently, the mean hopcount reduces and gets closer to the expected
hopcount in random graphs. This behavior is investigated as function of
the mean node degree in Figure 6.3. This Figure shows the mean hop-
count found for ξ = 0 and ξ = 3. When the mean degree is high enough
for a giant component to appear, at low values of ξ the mean hopcount
is close to the mean hopcount in a lattice network with the same length
and width as the service area of the ad-hoc network. When ξ increases,
the mean hopcount tends more towards the mean hopcount in a random
graph with the same number of nodes and the same link probability.

• For the same area size and for the same number of nodes the average node
degree increases with increasing value of ξ (see Figure 6.4). From the radio
propagation point of view, a higher value of ξ means a higher probability
of having links with nodes at farther distances. This translates itself into
a higher value of the mean node degree over the service area. This phe-
nomenon was addressed previously in [69] and in Chapter 4. The increase
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Fig. 6.3. Simulated results showing the mean hopcount as function of the mean de-
gree for different values of ξ in ad-hoc networks in comparison to the mean hopcount
in lattice networks and random graphs. Error bars on the line for actual hopcount
indicate the standard deviation of the simulated hopcount.

in the mean node degree directly enhances the probability of connectivity.

• In all simulated cases we see that the giant component size is growing
steeply towards 1 for those values of the mean degree that the probability
of 1-connectivity is very low. For a relatively large span of the mean degree
values the giant component is already covering most of the network but 1-
connectivity is not achieved yet. This is due to only a few isolated nodes or
small node clusters outside the giant component. This fact is demonstrated
in Figure 6.5 that shows the mean size of components other than the giant
component for different values of ξ. Starting from small values of the mean
degree, as the mean degree increases, the mean size of the giant component
as well as the mean size of other components increase. However, soon the
giant component will ”swallow” smaller clusters and causes their mean
size to drop rapidly. In [77] it is proved that the size of the components
other than the giant component is O(log N), to which our simulated results
comply. We believe for practical use of ad-hoc networks 1-connectivity is
a too stringent condition to satisfy. Therefore, we suggest to use the giant
component size as a measure for connectivity in wireless ad-hoc networks.
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Fig. 6.4. Mean node degree for 500 nodes uniformly distributed over areas of dif-
ferent sizes for different values of ξ.

The giant component size not only provides information about the network
being fully connect or not, but also it provides additional information
about the fraction of the network which is fully connected. For practical use
of ad-hoc networks it may suffice to provide conditions that, for example,
only 99% of the network is connected.

This last point regarding the use of the giant component as a more suitable
measure of connectivity is discussed in more details in the following section.

6.3 Giant component size

In Chapter 3 we already mentioned that in random graphs for large N the
giant component size S is the non-zero solution to (3.4). In the subplots of
Figure 6.1 we already showed the giant component size found through sim-
ulations for ξ = 0, 1, 2 and 3. In Figure 6.6 we have plotted them next to



6.3 Giant component size 67

0 5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

mean degree

co
m

po
ne

nt
 s

iz
e

Mean size components other than giant comp. (N = 500)

ξ=0.00
ξ=1.00
ξ=2.00
ξ=3.00

Fig. 6.5. Mean size of components other than the giant component for different
values of ξ.

each other (with an additional line2 for ξ = 6) and compared them3 with the
giant component size in a random graph, found using (3.4). From Figure 6.6
we see that the lines representing the giant component size for high values
of ξ get close to the values predicted by (3.4) for random graphs. However,
for low values of ξ the giant component size appears to be shifted along the
mean degree axis. The amount of this shift is higher for lower values of ξ. We
have tried several function forms to estimate this shift. A good approximation
found for this shift is: 2.64 exp(−0.44ξ). Taking this into account, the size of
the giant component in wireless ad-hoc networks based on our lognormal ge-
ometric random graph model, Slg, is by approximation the non-zero solution
to the following equation:

Slg = 1 − exp (−z̃Slg) , z̃ � z − 2.64 exp(−0.44ξ) (6.4)

2 We have chosen to include a line for ξ = 6, although from the radio propagation
point of view this value is not very likely (see Section 3.4.3). This high value for ξ
is chosen only to show that in the theoretical case where radio signal power fluc-
tuations are very severe they can dominate significantly the distance dependency
of radio links, and could cause the network to behave like a random graph.

3 The giant component sizes found through simulations in Figure 6.6 are found
for N = 500. Other simulation results for N = 250 and N = 1000 indicated no
noticeable difference with these values.
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Fig. 6.6. Comparison of the giant component size in a random graph with the
values found for ad-hoc networks.

where, z = E [d] is the mean degree in the ad-hoc network. Figure 6.7 shows
the in this way calculated giant component size in wireless ad-hoc networks
for different values of ξ. For comparison, the giant component size in random
graphs is drawn on each subplot of this figure. As visible in this figure, there
is a good match between the simulated and the calculated values of the giant
component size.

6.4 Chapter summary

In this chapter we have studied connectivity in wireless ad-hoc networks by
modeling the network as an undirected geometric random graph. The novel
aspect in our study is that for finding the link probability between nodes we
used the lognormal propagation radio model, that takes into account statis-
tical fluctuations of the radio signal power around its mean value. Using this
model we have been able to modify the theorems for connectivity in ad-hoc
networks. Our study shows:

1. The first theorem of connectivity that states for the connectivity of a
network the link probability, p, needs to exceed log(N)/N is only a good
test of connectivity when N → ∞. In ad-hoc networks where the number
of nodes is limited to tens or hundreds of nodes, the log(N)/N value is
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Fig. 6.7. Simulated and calculated values for the giant component size in ad-hoc
networks for different values of ξ.

only an accurate indicator for the threshold where a giant component
starts to appear.

2. Power fluctuations of radio signals reduce the amount of correlation be-
tween links, causing the network to behave like a random graph with
uncorrelated links. The second theorem of connectivity states that proba-
bility of a network to be 1-connected is equal to the probability of the mini-
mum degree to be more than or equal to 1. This theorem has been proved
to be true for the pathloss geometric random graph model only when
Pr [dmin ≥ 1] is almost 1. However in our lognormal geometric random
graph model when ξ increases, the geometric random graph approaches
the random graph behavior, and the probability of 1-connectivity equals
the probability dmin ≥ 1 for all values of Pr [dmin ≥ 1].

3. Radio signal power variations increase the probability of long links, which
enhances the probability of connectivity for the entire network.

Another new result in this chapter is an equation found for the calcula-
tion of the giant component size in wireless ad-hoc networks, that takes into
account the level of radio signal power fluctuations. Our formula can be used
to provide directives for the average required number of neighbors per node
(mean degree per node) to obtain connectivity over any desired percentage
of the network. Mean degree can be changed by adjusting the transmission
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power of nodes or by changing the density of nodes. Results presented in this
chapter also demonstrate that full connectivity is achieved at relatively high
values of the mean degree, while at far lower values of the mean degree a very
large portion of the network could already be connected. Therefore we argue
that for practical planning and design of wireless ad-hoc networks or sensor
networks 1-connectivity (full connectivity) is a too stringent condition, and
suggest to use the giant component size as a measure for ”connectivity”.
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MAC Protocols for Packet Radio Networks

Study of the Medium Access Control (MAC) protocols does not belong to
the primary topics considered in this book (see Figure 2.1). However, MAC
protocol characteristics affect directly interference levels, as well as capacity in
ad-hoc networks. In this chapter we specify these characteristics and introduce
a method of classification for the MAC protocols. This classification method
facilitates our study of the interference and the capacity of ad-hoc networks
in Chapters 8 and 10.

7.1 The purpose of MAC protocols

MAC protocols are needed to regulate communication between nodes through
a shared medium. It corresponds to the data link layer (layer 2) of the ISO
Open System Interconnect (OSI) reference model [78]. Many MAC protocols
have been developed for communication in wired networks as well as wireless
networks. For example IEEE 802.3 based on CSMA/CD for wired Ethernet
and IEEE 802.11 for WLANs [79]. Sharing a medium by many users unavoid-
ably restricts system performance for users in average [80]. A well-designed
MAC protocol is essential to maximize the performance and the efficiency of
the network.

In wireless ad-hoc networks, MAC protocols are needed as well to ensure
successful operation of the network. With the increased international attention
to ad-hoc and sensor networks many MAC protocols have been suggested for
these networks in the past few years. Each of these MAC protocols may have
different priorities for problems to solve, depending on the applications to be
supported on higher OSI layers. For example, in sensor networks MAC pro-
tocols may primarily attempt to minimize energy consumption [81], whereas
in ad-hoc networks intended for mobile multimedia, the emphasis is put on
packet delay minimization and throughput maximization. As mentioned in
Chapter 2, in this book we are not considering power consumption and energy
efficiency, although this topic by itself has been the center of much attention

71
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Fig. 7.1. Schematic view of Sending, Receiving, Hidden and Exposed nodes (ter-
minals) in packet radio communication networks.

([82], [83], [84], [85]). In our study, effects of the MAC protocols on the in-
terference, delay and throughput are relevant. These parameters are affected
directly by the way that the MAC protocol deals with the hidden terminal
and the exposed terminal problems.

In the Section 7.2 we describe the hidden and the exposed terminal prob-
lems and analyze the way that they affect the performance of packet radio
networks in general. In Section 7.3 we will see how MAC protocols for ad-hoc
networks can be categorized based on the way that they handle the hidden
and the exposed terminal problems. We will use this classification in our study
of the interference and the capacity of ah-hoc networks in Chapters 8 and 10.

7.2 Hidden terminal and exposed terminal problems

The hidden terminal and the exposed terminal problems are well-known prob-
lems in packet radio transmission and are commonly described in telecommu-
nications text books and various articles ([86], [87], [88] and [89]). For the
understanding of our classification of the MAC protocols we need to explain
the hidden and the exposed terminal problem briefly.

The hidden terminal problem was first mentioned by Kleinrock and Tobagi
in [90]. In radio communications, the radio signal strength decreases with
distance, limiting the range of radio transmission. In Figure 7.1, there are
four nodes, S (sender), R (receiver), H (hidden terminal), and E (exposed
terminal). For simplicity in visualization of the problem, these four nodes
are assumed to have the same radio transmitting range and circular coverage
areas. The left and the right circles represent, respectively, the coverage area
of nodes S and R. Terminals E and R are within the coverage area of node S
and terminals H and S are within the coverage area of node R. This means
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that S can transmit and receive signals from E and R, and similarly, R can
transmit and receive signals from S and H.

To avoid collision of packets over the wireless channel, there is a basic rule
in MAC protocols: a node does not attempt a transmission when it senses the
medium to be busy. This principle is called carrier sensing and is achieved
through listening to the radio channel. Suppose that S is sending a packet
to R. The medium (i.e. radio channel) between S and R is determined to be
busy by all nodes within the coverage area of S, therefore no other node within
this region would ideally cause a collision with the packet being transmitted
form S to R. However, if at roughly the same time or in an overlapping time
interval, H would have a packet to send to either R or to another node in its
own range, it will sense the medium as idle, because S and H cannot hear
each other (H is hidden to S). If H would proceed with sending its packet,
at node R the two transmitted packets will collide. As a result, one or both
of the packets may be lost. As we see, the hidden terminal problem causes
collision of packets and packet losses. This directly affects the throughput of
the system, rendering the system less effective.

The second major issue is the exposed terminal problem. The problem is
quite the opposite of the hidden terminal problem. In the exposed terminal
case, when S is transmitting to R, E is also aware of the transmission. If E
has a packet to send to another node outside the radio range R, it will unnec-
essarily postpone its transmission. It means that there is a lost transmission
opportunity due to the exposure of E (hence, the name exposed terminal) to
S, while there is no need for waiting. The consequence of the exposed terminal
problem is that the radio channel is utilized less effectively, which in turn also
reduces the throughput of the system. It is also affecting the average packet
delay, which will be increased because of the unnecessary waiting time.

It is obvious that hidden and exposed terminal problems that occur in
MAC protocols based on carrier sensing alone are less desirable if radio chan-
nel needs to be used more efficiently. There have been various MAC protocol
suggestions to solve these problems. These solutions come at the expense of
additional complexity in protocol design and signaling overhead. Although
these solutions offer more efficient use of the shared medium, any MAC pro-
tocol still has to restrict the number of simultaneous signal transmissions per
unit of area and consequently affect the aggregate interference power and the
network capacity. It is beyond the scope of this book to describe all concepts
used in MAC protocol design to improve the radio channel utilization. Prefer-
ably, we classify MAC protocols based on their ability to solve the hidden
terminal and/or the exposed terminal problems. Our method of classification
enables us to predict inference in ad-hoc networks for all MAC protocols, with-
out getting into details of each protocol individually. For any MAC protocol
it is sufficient to know to which class of protocols it belongs.
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Fig. 7.2. Schematic view showing the working of the three MAC protocol classes.
For simplicity, we have assumed a circular coverage area for each node (ξ = 0). The
gray areas show the regions where each MAC protocol class attempts to restrict
simultaneous transmissions.

7.3 Classification of MAC protocols

In Figure 7.2 we have depicted how MAC protocols can be classified into
three distinct classes based on the method that they handle the hidden and
the exposed terminal problems:

Class 1: MAC protocol prohibits simultaneous transmissions within the
sender’s radio range. This class leaves the hidden node as well as the
exposed node problem unsolved. CSMA/CA without reservation [6] is a
typical example of MAC protocols that fall into this category.

Class 2: MAC protocol prohibits simultaneous transmissions within the
sender’s as well as receiver’s radio range. This class solves the hidden
node problem but leaves the exposed node problem unsolved. CSMA/CA
with reservation [6] is an example of this category. Other examples are
MARCH [91], S-MAC [92], EMAC [93] and CATS [94].

Class 3: MAC protocol prohibits simultaneous transmissions within the re-
ceiver’s radio range and simultaneous transmissions towards nodes within
the sender’s radio range. This class solves both the hidden node as well as
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Table 7.1. Prohibited and allowed transmission/reception possibilities for different
classes of the MAC protocols.

nodes inside S but outside
R coverage (denoted as E)

.3 nodes inside R but
outside S coverage
(denoted as H)

nodes in overlapping S
and R coverage

may send may receive may send may receive may send may receive
MAC class 1 no (1) yes (2) yes (3) yes (4) no yes (2)
MAC class 2 no (1) no (5) no no no no
MAC class 3 yes (6) no no yes (7) no no

1: This could have been allowed as long as destination node is outside the coverage area of R.
2: From nodes outside the coverage area of node S.
3: To any node.
4: From nodes outside the coverage area of node S.
5: If E was allowed to receive, the packet intended for it would have collided with data coming

from S.
6: To nodes outside the coverage area of node R.
7: From nodes outside the coverage area of R.

the exposed node problems, but requires e.g. the deployment of an addi-
tional signaling channel. Two MAC protocols that fall into this category
are multichannel RBCS [95] and DBTMA [96].

This method of classification is based on the way that a MAC protocol
allows or prohibits nodes in the coverage area of nodes S and R to send or
receive data while a packed is being transmitted from node S to node R.
Figure 7.2 gives a schematic view but does not show the details regarding
nodes being able either to send data to or receive data from other nodes. A
more detailed description of the operation of the three MAC protocol classes
is given in Table 7.1.

7.4 Chapter summary

In this chapter we have highlighted the importance of the MAC protocols in
our study of fundamental properties of wireless ad-hoc networks. Specifically
interference and capacity of wireless ad-hoc networks are directly affected by
the working of the MAC protocols. We have studied many MAC protocols and
have come to the conclusion that for the purpose of our study MAC protocols
can best be classified in three different groups [72]. This classification is based
on the way that MAC protocols solve the hidden and the exposed terminal
problems. Our method of classification enables us to take the impact of MAC
protocols into account in our studies (see Chapters 8 and 10) without getting
into details of each protocol individually. For any MAC protocol it is sufficient
to know to which class of protocols it belongs.

We have not described working of the MAC protocols in general, because
we have assumed familiarity of the reader with this topic. Neither have we
provided detailed description of the working of any of the MAC protocols
mentioned in this chapter. It has not been our intention to provide a survey
of the MAC protocols here.
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Interference in Ad-hoc Networks

For the performance evaluation and determination of the capacity in any
wireless network, it is important to have good calculation models to estimate
interference power statistics. To our best knowledge, till now there has been no
accurate calculation model to estimate the expected interference power and its
distribution function in ad-hoc and sensor networks with realistic assumptions
regarding radio propagation. We believe that we have provided such a model
in this chapter.

It needs to be mentioned that already since a few decades we have good
mathematical works, like [97], [98] and [99] that have investigated interference
power in distributed packet radio networks with multi-hop character. For ad-
hoc networks, the ”order of magnitude” of the interference and the network
capacity have also received attention, for example in [22] and [25]. However,
these works are based on the pathloss propagation law that does not take the
statistical variation of radio signal powers into account (see Section 3.4.1).

For fixed topology networks like cellular networks there exist interference
calculation methods that indeed take the statistics of radio propagation into
account (see e.g. [100]). However, these models assume that the interfering
sources are all at fixed positions with known distances to the point where
the aggregate interference power statistics is supposed to be calculated. It is
obvious that combining radio signal power variations with random movement
of nodes make mathematical modeling of interference a challenging task. In
this chapter we use the method for the estimation of the interference statistics
in fixed topology networks and add required features to enable us to calcu-
late, with good accuracy, the interference power statistics in wireless ad-hoc
networks with random position of interference sources. Our interference cal-
culation model takes into account radio propagation conditions, the density
of nodes, the size of the network, MAC protocol characteristics and the traffic
load per node. The accuracy of our approach has been verified by simulations.

Section 8.1 of this chapter illustrates how the MAC protocol restricts the
interfering node density, and consequently the interference power sum. In
Section 8.2 we explain our calculation method. There we describe also two
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important aspects, specific to ad-hoc and sensor networks, that should be
taken into account for the correct estimation of the interference power sum.

8.1 Effect of MAC protocols on interfering node density

MAC protocols restrict the number of simultaneous signal transmissions per
unit of area and consequently curb the aggregate interference power in ad-
hoc networks. The density of interfering nodes depends (among other factors)
on the MAC protocol classes described in Chapter 7. Figure 8.1 shows an
example. In this example the lognormal radio propagation parameter ξ = 0,
which results in a circular coverage area per node. On this figure we see that
the interfering node density for each of the MAC classes is a different value.

The procedure for finding the interfering node density is as follows. A
receiving node is placed in the center of the service area of arbitrary size and
shape. Other nodes with the given density ρ are uniformly distributed around
the center node. One of the nodes inside the coverage area of the center node
is chosen at random to function as a sending node. These two nodes form
a sending-receiving node pair. The coverage area for each node includes all
nodes that according to (3.13) can be connected to it. Using the restrictions
dictated by each class of the MAC protocols, new sending-receiving node pairs
are formed one by one till no other combination is possible. Here we assume
that the nodes always have data to send (activity ratio 100%). Selection of a
new sending-receiving node pair occurs at random. This means that each time
from the nodes that are not prohibited from transmission a node at random
is chosen to be a sending node. From the neighbors of this new sending node,
one node that is not prohibited from reception is chosen at random to be
the receiving node. At the end of this procedure some nodes will be left that
can neither be a sender nor a receiver. All sending nodes, except for the
first sending node that is transmitting a wanted signal to the center node,
are experienced as interference sources at the center node. The number of
interfering sources found for each MAC class determines the interfering node
density.

For the calculation of the interference power in ad-hoc and sensor networks,
the density and the distribution of the interfering nodes must be known. When
the density of nodes increases, more nodes will fall within the prohibited
transmission areas. As a result, the density of interfering nodes is not expected
to increase linearly with the increase in the density of nodes. We argue here
that the interfering nodes density, ν, depends not only on the density of nodes
forming the network, ρ, but also on the MAC protocol class and the radio
propagation factor ξ. Factor ξ determines the link probability between nodes
and consequently the shape and the extent of the coverage area around each
node.

For a wide range of ξ and ρ values we have performed simulations to find
the interfering nodes density. In each simulation we have placed one receiving
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Fig. 8.1. The working of MAC classes 1, 2 and 3 on randomly distributed nodes
with the density of 3 nodes per normalized area of 1 × 1 in a circular service area of
normalized radius 5 with ξ = 0.

node in the center of a sufficiently large circular area and have followed the
procedure described above to find the interfering node density. The normalized
radius of the circular service area has been set to 3 times the distance where
the link probability (3.13) drops to 5%. Therefore, the normalized radius of
the area depends on the factor ξ. As an example, the normalized radius of the
service area is 9.6 in case of ξ = 3, in other words 9.6 times the distance R
defined in Section 3.4.2.

Results regarding the obtained interfering node density for different MAC
classes are shown in Figure 8.2. For each combination of ξ and ρ we have
performed 100 simulations1. The values shown in this figure are the mean

1 We have observed little variations in the obtained values of interfering node den-
sities between simulation runs. Therefore repeating simulations for each combi-
nation of ξ and ρ for only 100 times provides already an accurate estimate for
the mean value.
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values. For better inspection of results a part of the simulation data is re-
drawn in Figure 8.3. It can be seen from these figures that, as expected, the
interfering node density is highest in MAC class 1 and lowest in MAC class
2, with MAC class 3 in-between2. We see also that when the node density ρ
increases, the interfering node density ν increases as well but tends to level off
for large values of ρ. In fact, in our simulations, the interfering node density
always remains under 0.8. Further, because the mean node degree (neighbors
per node) depends on ξ, the interfering node density depends on ξ as well.
By increasing ξ the mean node degree increases (see Chapter 4), thus for each
sending-receiving pair formed, the number of nodes falling within the prohib-
ited transmission areas increases as well. Therefore, as observed in Figure 8.3,
the number of potential interfering nodes tends to decrease for the highest
values of ξ in comparison to the case ξ = 0.

To be precise, our simulations have shown situations where by changing
ξ from 0 to 3, the interfering node density increases slightly at first before
starting to decrease. This only happens for MAC classes 1 and 3 at high
values of ρ (notice the slight bending of the interfering node density for MAC
class 1 and 3 at ρ = 10 in Figure 8.2). The explanation for this effect is that in
MAC classes 1 and 3, in contrast to MAC class 2, a node inside the prohibited
areas still may receive data from nodes outside these areas. When ξ increases
the number of nodes that fall inside the prohibited areas increases as well.
On the one hand, this increases the number of potential receivers and makes
new sending-receiving node pair combinations possible. On the other hand,
for each sending-receiving pair formed, the number of nodes not allowed to
send increases. Simulations seem to indicate that the combined outcome of
these two effects is the decrease of interfering node density for the highest
values of ξ.

Using simulation results, we have found 2-dimensional fitting formulas3

for the interfering node density:

ν �
⎧
⎨

⎩

0.3466 + 0.1658 log(ρ) − 0.0283ξ MAC class 1
0.2403 + 0.0910 log(ρ) − 0.0453ξ MAC class 2
0.2634 + 0.1741 log(ρ) − 0.0130ξ MAC class 3

. (8.1)

The root-mean-square error in the fit is 0.04, 0.02 and 0.03 for, respec-
tively, MAC classes 1, 2 and 3. Based on (8.1) we may conclude that ν is by
approximation a linear function of log(ρ), at least for the range of ρ values

2 We base this expectation on the fact that the area of prohibited transmission or
reception in MAC class 2 includes the entire coverage area of the sending and the
receiving nodes. Therefore, MAC class 2 is the most stringent protocol class and
allows the least number of simultaneous transmissions. MAC class 1 is the least
stringent class and MAC class 3 is between these two classes. This point can be
verified by counting the number of ”yes” and ”no”-s in table 7.1.

3 We have used the rstool of Matlab r© for the 2-dimensional fitting [101].
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Fig. 8.2. Density of interfering nodes found by simulations for MAC classes 1, 2
and 3 (0 ≤ ξ ≤ 3 and 0.5 ≤ ρ ≤ 10).
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Fig. 8.3. Density of interfering nodes found by simulations for MAC classes 1, 2
and 3. Left subplot: 0.5 ≤ ρ ≤ 10 and ξ = 0, right subplot: 0.5 ≤ ρ ≤ 10 and ξ = 3.
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Fig. 8.4. Estimated interfering nodes densities using (8.1) for MAC classes 1, 2 and
3.

included in our simulations (0.5 ≤ ρ ≤ 10). Figure 8.4 shows the interfering
nodes densities calculated using (8.1).

As mentioned before our simulations are based on the assumption that
all nodes in the ad-hoc or the sensor network always have data to send to
any of their neighbors. In reality this is not the case. At any moment in time
only a portion of nodes forming the network are active. If the activity ratio
is indicated by τ ∈ [0, 1], we can use (8.1) to estimate the interfering node
density by replacing ρ with τρ.

8.2 Interference power estimation

As described in Section 3.4.3 we are assuming lognormal distributed powers,
which implies that the interference consists of lognormal components. The
sum of lognormal components is a well-studied topic in cellular networks with
fixed topology (see e.g. [102]). Here we expand the summation method of
lognormal components, to our best knowledge for the first time, to ad-hoc
and sensor networks. We will explain that this expansion for the estimation of
the sum of interference power in ad-hoc networks is not trivial. Our approach
is described stepwise in Sections 8.2.1, 8.2.2 and 8.2.3. In Section 8.2.4 we
evaluate our approach with simulations.
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8.2.1 Sum of lognormal variables

A lognormal random variable is characterized by the property that its log-
arithm has a Gaussian distribution. Let Li be a lognormal random variable
and let

Xi = 10 log10 Li.

The probability density function (PDF) of Xi is:

fXi
(x) =

1√
2πσxi

exp

(
− (x − µxi

)2

2σ2
xi

)

,

where µxi and σxi
are the mean and the standard deviation of Xi. For cal-

culation it is more convenient to use the natural logarithm of Li. We define
Yi = log(Li) with the PDF:

fYi
(x) =

1√
2πσyi

exp

(
− (x − µyi

)2

2σ2
yi

)

and mean µyi
and standard deviation σyi

. The random variables Xi and Yi

are related as:

Yi = βXi,
µyi

= βµxi ,
σyi = βσxi ,

β � log(10)/10.

We are interested to find the PDF of the sum of t lognormal random vari-
ables: L = L1 + L2 + ... + Lt. Unfortunately, there is no exact mathematical
solution found for this distribution. However, there exist two widely accepted
good approximation methods. The first method is the Fenton-Wilkinson (FW)
approximation [103], [104]. The second method is the Schwartz-Yeh (SY) ap-
proximation [105]. Both methods assume that the power sum of lognormal
components has a lognormal distribution with a mean and a variance that
can be calculated directly from the mean and the variance of each individual
component (and if applicable, the correlation factor between the components).
These methods approximate the sum of t lognormal random variables as:

L =
t∑

i=1

Li =
t∑

i=1

eYi � eZ , (8.2)

where Z is a Gaussian random variable with mean and standard deviation of
respectively µz and σz.

Working with lognormal signals often requires conversion between loga-
rithm base 10, natural logarithm and non logarithmic values. The mean and
the variance of variables change due to these conversions. The conversion
rules, although simple, must be followed meticulously. We have summarized
these rules here. Let µx and σx be the mean and the standard deviation of a
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random variable X; and µy and σy be the mean and the standard deviation
of random variable Y :

if Y = log(X) then
{

µy = 2 log(µx) − 0.5 log(σ2
x + µ2

x)
σ2

y = log(σ2
x + µ2

x) − 2 log(µx)

if Y = exp(X) then
{

µy = exp(µx + σ2
x/2)

σ2
y = exp(2µx + 2σ2

x) − exp(2µx + σ2
x)

if Y = 10 log10(X) then
{

µy = β−1
[
2 log(µx) − 0.5 log(σ2

x + µ2
x)
]

σ2
y = β−2

[
log(σ2

x + µ2
x) − 2 log(µx)

]

if Y = 10X/10 then
{

µy = exp(βµx + β2σ2
x/2)

σ2
y = exp(2βµx + 2β2σ2

x) − exp(2βµx + β2σ2
x)
(8.3)

where β � 0.1 log(10).
In the following we describe the FW and SY approximation methods. It

should be mentioned that the original approximation methods published in
[103] and [105] have considered the sum of t independent lognormal random
variables. The approximation methods have been expanded later by others
to include the case of correlated variables as well [106]. In this book we will
assume that lognormal random variables are independent.

Fenton-Wilkinson (FW) approximation

In the Fenton-Wilkinson approach µz and σz are found by matching the first
two moments of L with the first two moments of eZ . The k-th moment of eZ

is:

E
[
ekZ
]

= exp
(

kµz + k2 σ2
z

2

)

.

Matching the first moment provides:

E[L] = E
[
eZ
]

= E
[
eY1 + eY2 + ... + eYt

]

= exp
(
µz + σ2

z/2
)

=
∑t

i=1 exp
(
µyi

+ σ2
yi

/2
)

� u1.

Matching the second moment provides:

E[L2] = E
[
e2Z
]

= E
[(

eY1 + eY2 + ... + eYt
)2
]

= exp
(
2µz + 2σ2

z

)
=
∑t

i=1 E
[(

eYi
)2
]

+ 2
∑t−1

i=1
∑t

j=i+1 E
[
eYi+Yj

]
� u2.

In the FW method of calculation, knowing the mean and the standard
deviation of Li components, the values for u1 and u2 are calculated first.
Solving the above two equations for µz and σz then provides:

µz = 2 log(u1) − 1
2

log(u2), σ2
z = log(u2) − 2 log(u1). (8.4)
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Using (8.3) and (8.4) we find the mean and the standard deviation of L,
the sum of the lognormal components. The distribution form is of course, as
assumed lognormal.

It is known from the literature that the FW approximation is applicable
with good accuracy when the standard deviation of lognormal components
are less than 4 dB ([102], [103], [104]).

Schwartz-Yeh (SY) approximation

Schwartz and Yeh [105] also approximate the sum of lognormal variables by
a lognormal distribution. However in their method the first and the second
moment of the random variable Z are not obtained based on this assumption.
They rather find exact expressions for the first two moments of the sum of two
lognormal random variables. By assuming that this sum is again a lognormal
random variable a recursive technique is used to find the first two moments of
the sum of t > 2 lognormal random variables. The calculation method in the
original paper of Schwartz and Yeh is complex and, as we have seen, prone
to round-off errors when programmed on a computer. For our calculations
we have used a modified method presented by Ho [107]. The expressions for
finding the exact mean and variance of the sum of two lognormal random
variables Z2 = log

(
eY1 + eY2

)
are summarized here ([102], [107]):

µz2 = µy1 + G1, σ2
z2

= σ2
y1

− G2
1 − 2σ2

y1
(I0 + I2) + G2, (8.5)

where,

G1 = A0 + I1,

G2 = I3 + 2I4 + σ2
wI0 + µwA0,

µw = µy2 − µy1 ,

σ2
w = σ2

y2
+ σ2

y1

A0 =
σw√
2π

exp
(

− µ2
w

2σ2
w

)

+ µwI0,

Ii =
∫ 1

0
hi(v)v−1dv,

hi(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1√
2π

exp
(

−
(
log v + µw

σw

)2
/2
)

, i = 0

[fw(log v) + fw(− log v)] log(1 + v), i = 1
[fw(log v) − fw(− log v)] (1 + v−1)−1, i = 2
[fw(log v) + fw(− log v)] log2(1 + v), i = 3
−fw(− log v) log v log(1 + v), i = 4

,

fw(w) =
1

√
2πσ2

w

exp

[

− (w − µw)2

2σ2
w

]

.
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Fig. 8.5. Test of the FW and SY interference power estimation for lognormal dis-
tributed interference signals coming from known distances spread over a circular
area.

It is known from the literature that the SY approximation is applicable
with good accuracy when the standard deviation of lognormal components
are between 4 and 12 dB ([102], [104]).

Example using FW and SY methods

Both the FW and the SY estimation methods are very fast when implemented
on a computer, as they consist of a set of closed mathematical expressions.
Figure 8.5 shows an example of interference power estimation with the FW
and SY methods. Here we have used the FW and SY methods to approximate
the interference power at the center of a circular area with normalized radius
15 and 100 nodes at random positions but with well-known distances to the
center. The signal coming from each node is assumed to have a lognormal
distribution according to (3.12). In other words, each interfering signal is of
the form Xi = 10 log10 Li with µxi = 10 log10(r̂

−η
i ) and σxi = σ, where r̂i is

the normalized distance of the i-th node to the center. The pathloss exponent
η and the standard deviation σ of lognormal signals are indicated on each
plot. Actual PDFs are found by taking 10000 times independent interference
samples from each interference source. As we can see from Figure 8.5, the FW
and SY are very accurate estimation methods for, respectively, low and high
σ values.
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Adapting FW and SY methods to ad-hoc networks

The FW and SY methods can be used to derive the PDF of the interference
power when the number of interfering nodes, the mean power and the standard
deviation of each individual interfering component is known. In ad-hoc net-
works we can use (8.1) to estimate the number of interfering components. The
standard deviation σ of lognormal interference components is a characteristic
feature of the propagation environment and is given. However, the challenge
in using the FW and SY approximation methods for ad-hoc networks lies in
estimating the mean power of each individual component. This task is not
trivial due to the following two reasons:

1. The mean interference power experienced at node i from node j is directly
linked to the distance between i and j. Because of the random distribution
and the movement of nodes this distance is subject to changes. In Section
8.2.2 we describe a method to find the expected position of interfering
nodes.

2. Because of lognormal power variations, for any fixed distance rij between
nodes i and j there is a probability that these two nodes are ”visible” to
each other (see link probability in Figure 3.10). If node j is visible to node
i, depending on the MAC protocol, it may be prohibited4 from interfering
with node i. This phenomenon, which does not exist in cellular networks,
implies that knowing the distance to an interfering node (that provides us
with the mean expected power coming from that node) and the variance
of the interfering signal components is not enough to make an accurate
estimation of the aggregate interference power. In Section 8.2.3 we provide
a solution for this issue.

8.2.2 Position of interfering nodes

Let us assume that interfering nodes are uniformly distributed with density
ν around a center node in a circular area. We order these nodes according
to their distance, rm, to the center node. In other words, r1 is the distance
of the nearest interfering node to the center, r2 denotes the distance of the
second nearest interfering node to the center, and etc. The probability density
function of the radius rm of the m-th nearest interfering node to the center is
[108]:

frm(r) =
2πrν

(m − 1)!
(
πr2ν

)m−1
e−πr2ν , m = 1, 2, 3, · · · (8.6)

The expected distance of the m-th interfering node to the center node is
then:

4 It is realistic to assume that MAC protocol is fast enough to catch up with medium
scale power variations of the lognormal radio model.
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E[rm] =
∫ ∞

0
r frm

(r) dr =
Γ
(
m + 1

2

)

√
πν(m − 1)!

=
(2m)!

22m
√

νm!(m − 1)!
�
√

m

πν
.

(8.7)
In (8.7) we have used Gamma function duplication formula [109, 6.1.18]:

Γ (2m) = (2π)− 1
2 22m− 1

2 Γ (m)Γ (m +
1
2
),

and Stirling’s formula [109, 6.1.38]:

m! =
√

2πmm+ 1
2 exp(−m +

θ

12m
). 0 < θ < 1

The approximation in (8.7) is valid for large m.
In general, the moments of rm are:

E[rk
m] =

∫ ∞

0
rk frm(r) dr =

Γ
(
m + k

2

)

(m − 1)! (πν)k/2 ,

where frm
(r) is given by (8.6). The variance of rm is then:

V ar [rm] = E[r2
m] − (E[rm])2

=
1
πν

⎛

⎝m −
(

Γ
(
m + 1

2

)

Γ (m)

)2
⎞

⎠ .

Using the approximation [109, 6.1.49]:

Γ
(
m + 1

2

)

Γ (m + 1)
� 1√

m

[

1 − 1
8m

+
1

128m2 − ...

]

m → ∞

we obtain:

V ar [rm] � 1
πν

(

m − m

[

1 − 1
8m

+
1

128m2 − ...

]2
)

� 1
4πν

(

1 − 1
8m

+ O

(
1

m2

))

m → ∞

From the above we may conclude that the variance in the position of
interfering nodes is only negligible when ν 	 1. However, the simulation
results in Figure 8.2 indicate that ν < 0.8 for all MAC classes. This means
that the variance in the position of interfering nodes in ad-hoc networks is
not negligible.

In our calculations of the interference power sums we have used (8.7) to
estimate the expected distance of each interfering node to the center node.
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In other words, we have assumed that interfering nodes have a uniform dis-
tribution around the center node. The validity of this assumption is verified
by simulations. Figure 8.6 shows an example for a network with node density
3.0, pathloss exponent η = 3.0, σ = 2.4, and r = 4 (normalized radius of the
service area). With a MAC class 3 protocol, the interfering node density is
0.44. In Figure 8.6, the dotted vertical lines indicate the distance of the first
to the 6th interfering node calculated by (8.7). The marked curves show the
actual distribution of the position of interfering nodes that are found by sim-
ulations. As we can see there is a good match between the expected position
(mean values) of interfering nodes found through simulations and the second
to the 6th calculated positions. However, (8.7) predicts an interfering node at
distance 0.72 to the center node (the left most dotted vertical line in Figure
8.6) that never seems to appear in simulations. The explanation is that a node
at distance 0.72 would be connected to the center node with high probability5.
Due to the MAC class 3 restrictions, this node is then not allowed to transmit
a signal while the center node is receiving data from another node. Therefore,
assuming any interference power originated from this distance would provide
erroneous results. This matter which is related to point 2 mentioned on page
87 is dealt with by weighting the interference powers. The weighting method
is described in the next section.

8.2.3 Weighting of interference mean powers

As mentioned above, in ad-hoc and sensor networks for any interfering node
m at distance rm there is a probability that it is excluded from the sum of
interference powers. This probability is proportional to the link probability
p(rm), given by (3.13).

In order to take this effect into account in the estimation of interference
power sum, we suggest to weight the mean power of the m-th interfering signal
with a factor proportional to 1 − p(rm). Heuristically we have found out that
a weight factor w = (1 − p(rm))σ provides good results. This weight factor
takes into account not only the probability of the node being prohibited from
transmission, but also the severity of radio signal power variations represented
by σ. The weight factor w varies between 0 and 1. As rm increases p(rm)
decreases, causing the weight factor to tend towards 1. At short distances the
opposite occurs.

Figure 8.7 shows an example with the weighted and non-weighted area
mean powers. At short distances the weighting procedure reduces the strength
of interfering signals (as in reality the MAC protocol would have done by not
allowing strong interference from short distances) while at long distances there
is no difference between the weighted and the non-weighted case.

5 The exact probability is calculated using (3.13): With ξ = 2.4/3.0 = 0.8 we obtain
p(r̂) = 0.95.
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8.2.4 Interference calculation results

Using our proposed method to find the distance of interfering nodes and the
weighted mean power of individual interfering signals we now calculate the
distribution function of interference power sum. The input parameters are the
area size (circular area with normalized radius r), node density ρ, pathloss
exponent η, standard deviation σ of the radio signal power variations, and
the MAC protocol class. In this section we present our calculated values in
a few representative examples and compare them with simulated results to
verify the accuracy of our calculation method. The calculation procedure is
as follows:

1. The interfering node density is estimated using (8.1).
2. The expected positions of interfering nodes are found using (8.7).
3. The mean value of the interference power coming from each interference

source is weighted as described in Section 8.2.3.
4. The aggregate interference mean power and variance is estimated using

the FW or SY method. The FW method is used when σ ≤ 4 and the SY
method is used for 4 < σ < 12.

5. The distribution function of the interference power is derived from the
mean and the variance values assuming a lognormal distribution for the
power sum.

The simulation procedure is:

1. Nodes with density ρ are uniformly distributed over a circular area with
radius r.

2. Sending and receiving node pairs are formed taking the MAC protocol
restrictions into account. In our simulations we have assumed that nodes
always have data to send to any of their neighbors6.

3. Each individual interference component is found using the lognormal prop-
agation model (see (3.12)).

4. The aggregate interference power experienced at the center is obtained by
adding all individual interference components.

5. To obtain the distribution function of the interference power, the above
steps have been repeated 1000 times.

We need to point out here that the calculation procedure stated above is
very fast. The most computational extensive part of the calculation procedure
is the FW or SY method. However, on a personal computer it takes only a few
seconds to go through the calculation procedure. The simulation procedure
however, depending on the radius of the coverage area and node density, can
last several hours even days.
6 This 100% activity assumption for nodes can be considered as a worst-case in-

terference scenario. If the activity ratio of nodes is less than 1, our simulation as
well as calculation method still can be used by multiplying the node density with
the actual activity ratio.
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Fig. 8.8. Simulated and calculated PDF and CDF of normalized interference power
in the center of a circular area with the same parameters as in Figure 8.7.

Table 8.1. Calculated and simulated interference power statistics for several val-
ues of area radius r, node density ρ, pathloss exponent η, standard deviation of
shadowing σ and MAC classes 2 and 3.

Parameters sim. mean calc. mean sim. std calc. std
(dB) (dB) (dB) (dB)

r = 4.0, ρ = 8.0, η = 3.0, σ = 2.0, MAC 2 2.78 2.76 1.10 0.76
r = 6.0, ρ = 5.0, η = 2.4, σ = 1.5, MAC 3 6.84 6.45 0.68 0.35
r = 10.0, ρ = 1.0, η = 4.0, σ = 4.0, MAC 2 -2.82 -2.31 2.57 2.13
r = 8.0, ρ = 3.0, η = 4.0, σ = 9.0, MAC 3 3.40 3.04 1.62 2.59
r = 7.0, ρ = 3.0, η = 2.5, σ ≈ 0, MAC 3 5.71 5.57 0.63 0.00

Figure 8.8 shows one set of results. Other results are shown in Table 8.1. We
have not presented any simulation results for MAC class 1, because due to the
hidden node problem in this MAC class the interference power can explode.
Note that the interference power values shown here are all normalized values
according to the convention described in Section 3.4.3. Based on these results
we argue that our calculation method is accurate in estimating the mean
interference signal powers especially in situations where interference is not
very weak. The standard deviation of interference power is estimated with
less accuracy, as can be seen from Table 8.1. This is due to the spreading in
the actual position of interfering nodes around their expected positions (see
Figure 8.6) which is not included in our model. The variance of rm for low
values of ν is not negligible.
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Fig. 8.9. Expected mean interference power as function of the network node density
and area size for η = 3.0 and σ = 4.0.

Using our calculation method, we have plotted in Figures 8.9 and 8.10
two examples of the mean normalized interference power sum as function
of the area size and the node density. As we see, interference tends to level
off when the node density or the area size increases. In other words, in ad-
hoc and sensor networks increasing the area size or the node density does
not necessarily imply an unacceptable increase in interference power. We also
notice by comparing Figures 8.9 and 8.10 that, as expected, the interference
power is lower for higher values of the pathloss exponent η.

The interference calculation method presented here can be used to esti-
mate the capacity of ad-hoc and sensor networks. We will consider capacity
estimation in ad-hoc networks in Chapter 10.

8.3 Chapter summary

The focus of this chapter was on the estimation of interference power statistics
in ad-hoc and sensor networks. First we have shown that the interfering node
density depends on the MAC protocol characteristics. Each MAC protocol
class restricts in its own way the number of interfering signal transmissions
allowed per unit of area, regardless of the number of nodes falling within
that area. Therefore, the interfering node density does not increase linearly
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Fig. 8.10. Expected mean interference power as function of the network node den-
sity and area size for η = 6.0 and σ = 8.0.

with the density of nodes forming the network. We have found approximating
formulas for calculating the expected interfering node density. These formulas
show that interfering node density is, by approximation, proportional to the
logarithm of the node density. We observed that interfering node density is
less than 0.8 for all MAC classes.

Other result presented in this chapter is the calculation method using
lognormal radio propagation model for estimation of the interference power
sum statistics in ad-hoc and sensor networks. The input parameters for the
calculation method are the area size, the density of the nodes, the radio prop-
agation conditions (pathloss exponent and standard deviation), the activity
ratio of nodes and the MAC protocol class. Through simulations we have ver-
ified the accuracy of our method. The value of our approach lies not only in
its accuracy but also in its low computational complexity. Access to interfer-
ence statistics enables us to provide good estimates for the capacity of ad-hoc
networks under varying circumstances.

The calculation method presented here is a first attempt to expand inter-
ference power sum calculation from fixed topology networks to ad-hoc and
sensor networks. We realize that there is room for fine-tuning and improve-
ments in our approach. One improvement, for example, is to increase the ac-
curacy in the estimation of the standard deviation of the interference power,
as discussed in Section 8.2.4.
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Simplified Interference Estimation:
Honey-Grid Model

The calculation method described in Chapter 8 is an accurate estimation
method for determination of interference statistics. However, this method does
not provide us with a closed-form analytic formula for interference. In this
chapter we find a mathematical formula for expected interference in ad-hoc
networks. For this purpose we have simplified the reality of ad-hoc networks
in three aspects:

1. We have used the pathloss radio propagation model,
2. We have chosen for a specific arrangement of nodes on a 2-dimensional

hexagonal lattice resembling a honey-grid (which explains the name given
to our model: the honey-grid model),

3. We have simplified the rules of the MAC protocol.

We describe our model along with these three simplifications in Section
9.1, and explain why these simplifications have been adopted. In Section 9.2
we use the honey-grid model and obtain an analytic formula for the expected
interference in ad-hoc networks. This formula takes into account the network
size, density of nodes, transmission probability per node and radio propagation
pathloss exponent. We will also find a closed-form expression for an upper
bound on the expected interference in ad-hoc and sensor networks. In Section
9.3 we compare the honey-grid model results with the interference calculation
method presented in Chapter 8.

9.1 Model description

For simplicity of mathematical derivations, our interference calculations in
this chapter will be based on the pathloss power law model for radio propa-
gation (see 3.4.1). With the power law model for radio propagation, and the
assumption that transmission power and receiver sensitivity for all nodes is
the same, the coverage area of any node is a circle with radius R. A node can
have direct communication with all nodes that fall inside its coverage area.
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Node 0

Node 1

Node 2

R+ε

2(R+ε)

Fig. 9.1. Constellation of interfering nodes around node 0 when we arrange inter-
fering nodes in positions to obtain the maximum number of interferers.

On the data link layer, the ad-hoc network uses a multiple access scheme
for regulation of simultaneous transmissions (see Chapter 7). Our assumptions
regarding the MAC protocol are as follows. We assume that when a node, say
node 0, is receiving data, there will be no interference from other nodes inside
the coverage area of node 0. In the worst case interference situation, the first
set of interfering signals will come from other nodes closest possible to node
0. In other words, from nodes just outside the coverage area of node 0 (at
distance R + ε to node 0, with ε a sufficiently small number). For example, in
Figure 9.1 the first interfering signal could originate from node 1. When node
0 and node 1 are active simultaneously, the next interfering signal could only
come from nodes outside the coverage areas of both these nodes. In the worst
case situation, node 2 at the crossing point of the two circles with radius R+ε
in Figure 9.1, could be the second interference source. Adding new interfering
nodes in this way produces the constellation of nodes shown in Figure 9.1,
with node 0 in the center of the constellation. As depicted in this figure, there
are at most 6 interfering nodes at distance R + ε to node 0. On the next
interfering ring at distance 2(R + ε), there are at most 12 interfering nodes.

When we assume uniform distribution of nodes, inside the service area of
an ad-hoc network any position (x- and y-coordinate) is equally probable to
be occupied by a mobile node. However, in our approach we simplify this by
introducing a regular lattice to which the position of mobile nodes is restricted.
We will see later in this chapter that this restriction regarding the permissible
positions for mobile nodes enables the estimation of the expected value of
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interference without having accurate knowledge about the movement patterns
and the exact location of all nodes at all times.

Introducing a regular lattice can be seen as enforcing a certain granularity
on the 2-dimensional plane for the position of mobile nodes. On this lattice
each node has a number of adjacent nodes, that we define as nodes in its
direct vicinity and with the same distance to that node. When all positions
on a regular lattice are occupied, all nodes that are not at the borders of the
service area should have the same number of adjacent nodes; and adjacent
nodes should be at the same distance from each other. Geometrically, on the
2-dimensional plane two lattice forms fulfill these requirements. These lattices
are the rectangular lattice and the hexagonal lattice shown in Figure 9.2. In
mobile ad-hoc networks communication between nodes takes place over radio
channels and each node may have direct communication with all nodes inside
its coverage area. It should be noticed that, depending on the transmission
power and radio propagation conditions, the coverage area of a node may
contain more nodes than its adjacent nodes.

From the two lattice forms shown in Figure 9.2 we have chosen to base our
model on the hexagonal lattice. In this model, that we for obvious reasons will
call the honey-grid model, the permissible positions of nodes on the lattice can
overlap perfectly with the position of interfering nodes in the maximum in-
terference constellation shown in Figure 9.1. Therefore, the honey-grid model
allows for the maximum number of interfering signals. We have introduced the
idea of using a honey-grid structure for modeling ad-hoc and sensor networks
[110] and [111].

To complete the description of our assumptions in this chapter, we add
that it is assumed that all nodes transmit with the same power; all nodes have
the same traffic generation behavior and all data has the same priority.

When nodes are placed on a honey-grid, from the view point of a node
in the center of the configuration other nodes are positioned on co-centered
hexagons (see Figure 9.3). We call each of these hexagons a ring. The first
hexagonal ring has a side of size ∆, and contains 6 nodes. The ith hexagonal
ring has a side of size i∆ and contains 6i nodes. The size of the network can
be expressed in terms of k co-centered hexagonal rings around node 0, or by
N the total number of nodes in this configuration. N and k are linked through
the formulas:

N = 1 +
k∑

j=1

6j = 1 + 3k(k + 1) , (9.1)

k =
√

1/4 + (N − 1)/3 − 1/2.

In Figure 9.3 we have depicted by a circle the coverage area for node 0 in
the center of the configuration. In this example we have chosen the coverage
area so that it includes two hexagonal rings. The coverage area could be larger
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(a) (b)

Fig. 9.2. Regular lattice forms in the 2-dimensional plane: (a) rectangular lattice,
(b) hexagonal lattice.

and include more rings. This happens when the network density increases.
However, the radius of the coverage area cannot be less than ∆, otherwise
the network is not connected. The number of nodes inside the coverage area
of each node (its degree) is indicated by d. We assume that an entire ring is
either included or excluded from the coverage area. We define a node’s reach
as the number of hexagonal rings that fall inside the coverage area of that
node. We indicate the reach of a node by symbol a (for example, a = 2 in
Figure 9.3). The degree of a node that is not at the borders of the service area
is

d =
a∑

j=1

6j = 3a(a + 1). (9.2)

Each node may communicate directly with all nodes inside its coverage
area. For reaching other destinations multi-hopping must be used. There are
basically two ways for reaching each destination: If node 0 in Figure 9.3 wishes
to communicate with a node positioned on ring 3 (the third ring seen from the
center), it either can hop through a node on ring 1 and then a node on ring
2; or it can skip ring 1 and hop directly to a node on ring 2 before reaching
the destination. The first method preserves energy while the second method
keeps the number of hops minimum. We will show that our model can work
with both routing methods.

If we consider minimum hop routing, certain intermediate rings on the
way from the source to the destination can be skipped. Figure 9.4 shows
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Fig. 9.3. The honey-grid model showing all nodes.

in tick lines the subset of the rings that can be used for multi-hop routing
to any destination. We will call these rings relay rings. When packets are
routing throughout the network, there may be multiple paths to the same
destination. For example, the source (node 0) and the destination (node 3)
shown in Figure 9.4 may be connected by the path going through nodes 0−1−3
or the path going through nodes 0−2−3. In our calculation of interference it
is important to know the amount of relay traffic caused by multiple hops from
source to destination, but the exact path from the source to the destination
is not relevant. Therefore, for us both these paths are the same, as they both
consists of two hops. In Figure 9.4 where a = 2, we see that the first relay
ring has a side of the size 2∆ and contains 6 relay nodes. Relay nodes are
those nodes on each relay ring that need to be used to reach any arbitrary
destination (for example, when nodes 1 and 4 are relay nodes, node 2 is not
chosen as a relay node because all destinations that could be reached through
node 2 are already reachable through either node 1 or node 4). Generally, if a
is the reach of node 0, the number of co-centered relay rings seen from node
0 is 
k/a�, where the sign 
x� indicates rounding down to the nearest integer.
The number of relay nodes (source node included) is then:
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node 4

Fig. 9.4. Relay rings and relay nodes in a honey-grid. Thick lines show relay rings.
Dark filled circles are relay nodes. Hollow circles are other nodes in the network.

Nr = 1 +

 k

a�∑
j=1

6j = 1 + 3
⌊

k

a

⌋(⌊
k

a

⌋

+ 1
)

. (9.3)

We mentioned earlier in this section that our model can handle energy ef-
ficient routing as well as minimum hop routing. If parameter a = 1, regardless
of the reach of mobile nodes, the hopcount, traffic estimation and interference
power as found in this chapter will be for energy efficient routing. If parameter
a is chosen equal to the maximum radio reach of mobile nodes, the hopcount,
traffic estimation and interference are found for minimum hop routing.

9.2 Interference calculation with honey-grid model

According to the honey-grid model, each node has d other nodes inside its
coverage area (except for nodes at the borders of the network). As explained
in Section 9.1, around node 0 the first set of interfering signals will come
from signals that are transmitted from nodes just outside the coverage area
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Fig. 9.5. Honey-grid with interfering rings (thick lines) for a = 1.

of node 0. Recalling our assumption that an entire ring is either included or
excluded from the coverage area, the first ring of interference consists of 6
nodes positioned at distance (a + 1)∆ to node 0. Generally, if a is the reach
of node 0, the number of co-centered interference rings seen from node 0 is

k/(a + 1)�, and the number of interfering nodes is:

Ni =

 k

a+1�∑

j=1

6j = 3
⌊

k

a + 1

⌋(⌊
k

a + 1

⌋

+ 1
)

. (9.4)

Figure 9.5 shows the interfering rings and the interfering nodes observed
from the position of the center node in a honey-grid model with a = 1.

Nodes in the center of the configuration have the highest number of po-
tential interfering nodes around them in all directions. Therefore, we choose
the amount of interference experienced at node 0 as representative for the
maximum level of interference inside this network. In the remainder of this
section, a closed-form expression for interference at node 0 is found. If the
level of interference is acceptable at node 0, we can assume that it is also
acceptable for other nodes.
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To calculate the amount of interference experienced at node 0, we add
the interference power received at node 0 from all interfering nodes. The first
interference ring contains 6 nodes at distance (a+1)∆. The second interference
ring consists of 12 interfering nodes from which 6 nodes in the corners of the
hexagonal ring are at the distance 2(a+1)∆ to node 0 and 6 other nodes are at
the distance

√
3(a+ 1)∆ to node 0. The distance of the nodes on each ring to

node 0 can be calculated exactly. However, in our calculations in this chapter
we use a simplification: we assume that the distance between all interfering
nodes on each ring to node 0 is equal to the distance of the corner nodes to
node 0. This is not an inaccurate approximation, especially when the service
area is large. Following table shows calculation steps for finding interference
power originated from the jth interfering ring:

sequence number of interfering ring j
number of interfering nodes on this ring 6j
approximated distance of each interfering node to the center

node

j(a + 1)∆

interference power coming from each interfering node on the

ring

c (j(a + 1)∆/r0)
−η

interference power coming from all interfering nodes on the

ring

6jqc
(

j(a+1)∆
r0

)−η

normalized interference power coming from all interfering

nodes on the ring

6q
(
1 + 1

a

)−η
j1−η

The jth interfering ring contains 6j nodes at approximated distance
j(a + 1)∆ to node 0. Let q be the probability of transmission (transmis-
sion of own signals or relay signals) per node in a given time-slot . Us-
ing (3.8), the mean power of interfering signals originating from ring j is
6jqc (j(a + 1)∆/r0)

−η. According to our convention described in Section 3.4.3
we normalize this interference power to the power P = c (R/r0)

−η, where
R = a∆ is radius of the coverage area of a node. The normalized interference
power coming from ring j is then: 6q(1 + 1/a)−ηj1−η.

The total amount of normalized interference mean power is then:

Î = 6q(1 + a−1)−η


 k
a+1�∑

j=1

j−(η−1). (9.5)

When the network size increases
⌊

k
a+1

⌋
→ ∞, and the above formula can

be written as:

Î∞ = 6q(1 + a−1)−ηζ(η − 1)

where for Re(s) > 1, ζ(s) �
∑∞

j=1 j−s is the Riemann-Zeta function [109].
If the pathloss exponent η ≤ 2, the inference power tends to explode when
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the network size increases. Fortunately, as mentioned in Section 3.4.1, that
pathloss exponent in outdoor environments is always more than 2. In very
specific indoor environments the pathloss exponent is measured to be as low
as 1.6, but a network in indoor environments is not expected to grow large in
size. When the pathloss exponent η > 2, ζ(η − 1) is a converging series with
positive terms and is upper-bounded by [112]:

∞∑

j=1

j−(η−1) ≤ 1 +
∫ ∞

1

1
xη−1 dx =

η − 1
η − 2

.

Based on the above formula we can conclude that the amount of inter-
ference power in a mobile ad-hoc network is upper-bounded by the following
expression:

Î ≤ 6q(1 + a−1)−η η − 1
η − 2

, η > 2. (9.6)

This conclusion is an important result and may seem contra-intuitive at
the first glance. Intuitively, one may believe that adding interference power
from an infinite number of interference sources, regardless of how small the
interference values, may lead to an infinite sum. Above we have shown that
this is not the case when radio signals decay sufficiently fast over traveled
distances. To make a loose analogy, we all see that the sky at night is dark
despite the virtually infinite number of stars contributing to its brightness.

From (9.6) we see that the upper bound on interference does not depend
on the network size (number of nodes). But it depends on the density of
the network (reflected in the value of a), the pathloss exponent η, and the
probability of transmission per node q. Regardless of the total traffic per node,
the probability of transmission per node, q, can never exceed 1. Hence, we may
conclude that interference in mobile ad-hoc networks remains upper-bounded
regardless of the offered traffic.

9.3 Comparing with previous results

In Chapter 8, Section 8.2.4 we described a method for the calculation of
the expected amount of interference in ad-hoc networks with the lognormal
radio model and random topology of the network. Here we compare results
obtained with the calculation method presented there with the upper-bound
of interference (9.6) found with the honey-grid model.

Let us assume that the node density is ρ. In the honey-grid model the reach
of a node is denoted by factor a, and we have 1 +

∑a
j=1 6j = 1 + 3a(a + 1)

nodes in the coverage area of a node (see (9.2)). In the honey-grid model we
are assuming circular coverage areas. With normalized distances, the radius of
the coverage area of each node is 1 and its area size is π. The relation between
a and ρ is then by approximation:
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Fig. 9.6. Comparison of interference upper bound (9.6) with interference calculated
using the lognormal summation method. In this plot we have assumed ξ = 0.

ρ � (1 + 3a(a + 1)) /π,

a �
⌊
−1/2 +

√
1/4 − (1 − πρ)/3

⌋
.

For different node densities we have calculated the interference powers
with the method described in Chapter 8 and have compared them with the
interference power upper bound (9.6). Results for the case that ξ = 0 (pathloss
model) are shown in Figure 9.6. As we see for ξ = 0 (circular coverage area
around nodes), the amount of interference experienced in MAC classes 2 or 3
remains indeed under the expected upper bound. This implies that a random
topology configuration, as expected, produces less interference than in the
honey-grid model.

If we take the medium range radio signal power fluctuations (shadowing)
into account, our calculations show that the upper bound (9.6) still applies,
unless the power fluctuations are very severe. This point is verified by the
plots in Figure 9.7. In this figure we see for example that the upper bound
(9.6) is exceeded is the case of MAC class 3 with η = 6. Recalling that σ =
ξ × η, the standard deviation of radio signal power fluctuations in this case is
12 dB.
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Fig. 9.7. Comparison of interference upper bound (9.6) with interference calculated
using the lognormal summation method. In this plot we have taken radio signal
power fluctuations into account (ξ = 2).

9.4 Chapter summary

In this chapter we have proposed a new model to calculate interference levels
in wireless multi-hop ad-hoc networks. This model uses a regular hexagonal
lattice for the location of mobile nodes. This enables us to calculate the ex-
pected values of interference without having detailed information about the
movement patterns and the exact location of all nodes at all times. Assum-
ing a simple pathloss radio model, we have found a formula for the expected
interference in ad-hoc networks, and a closed-form expression for the interfer-
ence upper bound. The obtained upper bound depends on the density of the
network, the pathloss exponent and the probability of transmission per node.
Comparison with the method of interference calculation in Chapter 8 reveals
that this upper bound is still valid in networks with random topology, except
when the radio signal power fluctuations are very severe (close to 12 dB and
more).
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Capacity of Ad-hoc Networks

In this chapter we use our findings from Chapters 8 and 9 to calculate the
expected wanted carrier signal power to interference ratio in ad-hoc networks.
This metric, which is called Carrier-to-Interference ratio (C/I), determines di-
rectly the capacity of the radio channel and, consequently, the ad-hoc network.
Capacity is defined as the maximum possible information transfer rate over a
channel. The actual information transfer rate over a channel or between two
nodes is associated with the throughput of the system. Throughput measures
the number of bits per second delivered over the medium.

Throughput in ad-hoc networks is affected by the routing and the offered
traffic at each node. If a route cannot be found from a source to a destination,
the throughput between these two nodes is virtually zero. Additionally, the
offered traffic at one node determines the expected amount of relay traffic and
the throughput at other nodes. Therefore, in this chapter before discussing
the capacity and the throughput in ad-hoc networks, we clarify our assump-
tions regarding the routing and traffic generation in Sections 10.1 and 10.2,
respectively.

10.1 Routing assumptions

Given a network topology, the basic function of a routing algorithm is to find
an optimum path from a source to a destination. The optimum path is usually
a path with the shortest length (least number of hops), although other opti-
mization criteria like minimum delay or maximum throughput are possible as
well. Well-known examples of routing algorithms are Dijkstra and Bellman-
Ford algorithms. A good overview of routing algorithms can be found in [113].
Next to a routing algorithm, we need a routing protocol for coping with net-
work dynamics when nodes and links change over time. A good overview of
the routing protocols designed for ad-hoc networks can be found in [2], [4].

For the study of the capacity in ad-hoc networks we have assumed that a
route between the source and the destination always can be found if it exists.
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Although routing does not belong to our primary research topics (see Figure
2.1), we have studied effects of topology changes on data throughput and
capacity in ad-hoc networks briefly. For this purpose we have implemented
the principles of ant-routing ([114], [115]) in a software program and have
run simulations. Details are to be found in Appendix A. We have noticed
that data throughput reduces when due to topology changes some nodes or
collection of nodes become isolated. If isolated parts of the network do not find
a connection to the rest of the network during the life time of data packets
intended for them, the data is lost. However, as long as the connectivity of the
network is preserved, routing overhead has a less severe effect on the capacity,
as we will see in Section 10.4.

10.2 Traffic model

The output traffic per node consists of the node’s own traffic that is generated
by the host connected to the mobile node (we will call this traffic new traffic)
and the traffic that the node relays for other nodes (the relay traffic). Because
of relay traffic, the total amount of traffic per node is strongly related to the
multi-hop characteristics of the ad-hoc network. Our basic assumption here
is that the new traffic generated by the hosts connected to mobile nodes is
Poisson distributed and independent of each other. All hosts are similar and
have the same traffic generation behavior. In other words, mean generated
new traffic per node per time interval is the same for all nodes. We denote the
mean value of new traffic per time-slot per node by λ. The length of each time-
slot is denoted by tts. The average number of packet arrivals per unit time is
then λ/tts. Because we assumed a Poisson arrival process, for the probability
of k arrivals during a time interval of length t we have:

Pr k [t, λ] =
(λt/tts)

k

k!
e (−λt/tts) . (10.1)

Consider two nodes i and j. When the average hopcount is E[h], there are
in average E[h]−1 relay nodes between any source and any destination. Node
i may be a relay station for node j with the probability (E[h] − 1)/(N − 1),
and the expected value for relay traffic arriving at node i from node j is then
λ(E[h] − 1)/(N − 1). Any node in the ad-hoc network may be a relay node
for N − 1 other nodes. Therefore, the expected amount of relay traffic at any
node is: λ(E[h] − 1). The average total traffic per node, Λ, is the sum of the
node’s own traffic, λ, and all relay traffic that reach that node:

Λ = λ + λ (E[h] − 1)
= λE[h]. (10.2)

In this formula, E[h] is the expected value of the hopcount.



10.3 Capacity of ad-hoc networks in general 109

On page 102 we defined q, the probability of transmission per node per
time-slot. The mean value of total traffic generated per node determines q.
Using (10.1), for q we can write:

q = 1 − Pr 0 [tts, Λ]

= 1 − e−Λ

= 1 − e−λE[h]. (10.3)

10.3 Capacity of ad-hoc networks in general

In Chapters 8 and 9 we have provided methods for the estimation of interfer-
ence statistics as well as formulas for the expected interference levels in ad-hoc
networks. For correct reception of radio signals, the Carrier to Interference ra-
tio (C/I) needs to be higher than a certain threshold value (for example 7
dB)1. C/I is the ratio between the mean power of wanted signal and the mean
power of the sum of interfering signals. In radio communications the capacity
of the networks is directly linked to the expected value of C/I. If we know
the expected value of C/I, we can use the Shannon channel capacity formula
[116, Chapter 5] to find an upper bound on the reliable data transmission
speed between two nodes over the radio channel:

W = B log2 (1 + E[C/I]) .

Here B is the channel bandwidth2 in Hz and E[C/I] is the expected carrier to
interference ratio. W is in bits per second and indicates the upper bound on
the time-averaged error free bit transmission speed over the radio channel. In
other words, W is the maximum capacity of the wireless channel. When the
expected value of C/I decreases, the capacity of the link between two nodes
calculated with the Shannon formula decreases as well.

In ad-hoc networks an additional restriction on the capacity is imposed
by the MAC protocol. As described in Chapter 7, whenever a transmission
link is established between two nodes, a portion of other nodes in the network
will be prohibited from simultaneous transmission, because all these nodes are
sharing the same transmission medium. Under fair conditions, the capacity of
1 In general for correct reception of radio signals, the Carrier to Interference plus

Noise ratio needs to be higher than a certain threshold value. Here we are assum-
ing that noise power is negligible in comparison to interference power.

2 If a radio technology with spreading is used for radio communications, the channel
bandwidth B is the channel bandwidth after despreading process. E[C/I] is also
the expected value of carrier to interference ratio after despreading of signals. For
example, in IEEE802.11b the radio channel bandwidth before despreading is 22
MHz. With a processing gain of 11, B is equal to 2 MHz (for more information
see [117]).
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the radio channel is equally divided between all nodes competing to gain access
to the medium. The fraction of the nodes that gain access to the medium at
any time interval can be indicated by ν/ρ, where ρ is the node density and ν
is the interfering node density. The relation between these two parameters is
given in (8.1). In ad-hoc networks we need to multiply the Shannon capacity
by ν/ρ to obtain the maximum output bit rate, Rout,max, per node:

Rout,max =
ν

ρ
W =

ν

ρ
B log2 (1 + E[C/I]) . (10.4)

In this chapter we compare the output bit rate per node to Rout,max for
different network sizes, different network densities and different values of input
data bit rate per node. If traffic conditions are such that the output bit rate
per node tends to exceed Rout,max the network has capacity problems.

Based on (10.2) we can find the relation between the input bit rate per
node, Rin, and the output bit rate per node, Rout. However, for translation
from packets per time-slot to bits per second we need the exact duration
of a time-slot and the amount of overhead within each time slot. Duration
of each time-slot is indicated by tts. Each time-slot consists of an overhead
part, to, and a useful data transmission part, td. In other words tts = to +
td. The overhead time is the time needed for transmission of preamble and
header in each data frame. Further, the overhead time includes the required
inter-frame spacing times and the required time for the reception of MAC
Acknowledgments for each data frame. A typical value for to in IEEE 802.11b
is 364 µs [6]. The length of td depends on data packet size, P , and data
transmission speed, r. We can write td = P/r. In IEEE 802.11b, P may vary
between 34 to 2346 bytes, while r is either 1 Mbps, 2 Mbps, 5.5 Mbps or 11
Mbps [6]. The input bit rate per node, Rin, and the output bit rate per node,
Rout, relate to λ and Λ as:

Rin =
λP

tts
,

Rout =
ΛP

td
=

E[h]λP

td
=

tts
td

E[h]Rin. (10.5)

Let Rin,max indicate the maximum input bit rate per node that can be
supported by the network. Using (10.5), the maximum output bit rate per
node corresponding to this maximum input bit rate is:
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Rout,max =
tts
td

E[h]Rin,max.

Using (10.4) and the above formula we find:

Rin,max =
ν

ρ

td
tts

W

E[h]
. (10.6)

Some authors call Rin,max the per-user network capacity ([22], [118]). From
(10.6) we see that the per-user network capacity is inversely proportional to
the mean hopcount. This general observation explains the asymptotic values
found for the capacity of ad-hoc networks in the literature. For example, in
[22] it is shown that per-user network capacity with the pathloss geometric
random graph model is O

(
1/

√
N
)
, where N is the number of nodes. We can

easily explain this result noticing that the hopcount in the pathloss geometric
random graph model is of the same order as the hopcount in a 2-dimensional
lattice, which according to (3.6) is O

(√
N
)
.

After these considerations regarding the capacity of ad-hoc networks in
general, in the next section we perform capacity calculations for the specific
case of the honey-grid model.

10.4 Capacity calculation based on honey-grid model

For estimation of the capacity and the output bit rate per node we need to
know the expected C/I and the mean hopcount (see (10.4) and (10.5)). Exact
hopcount distribution in the honey-grid model is found in Section 10.4.1. The
expected C/I is analytically obtained in Section 10.4.2. Using results from
these two sections we analyze the capacity and the throughput of ad-hoc
networks in Section 10.4.3.

10.4.1 Hopcount in honey-grid model

We have found the exact hop distribution for the honey-grid model. The mean
and the variance are derived directly from the exact distribution of the hop-
count. The method for finding hopcount distribution in the honey-grid model
is discovered by finding the exact hopcount for several network configurations
(from k = 1 to k = 8) and extrapolating the observed systematics to higher
vales of k. The algorithm found in this way is presented here. For the definition
of parameters k and a please see Section 9.1.
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begin
k = number of rings
a = a node’s reach
s = k/a [note: s should be an integer, and k>a]
form matrix A(2s, s) with all values zero
form matrix B(2s, s) with all values zero
form matrix C(2s, s) with all values zero
form array h(2s) with all values zero
for j = 1 to s

A(1, j) = 3
A(i, j) = A(i-1, j) + 2, for i=2 to j
A(i, j) = A(i-1, j), for i=j+1 to 2j
B(i, j) = 2, for i=1 to 2j-1
B(2j, j) = 2j+1
A(i, j) = B(i, j)/2 + (A(i, j) - B(i, j)), for i=1 to 2j
h = h + 6j A(:, j) [note: A(:, j) denotes column j of A]

end for loop
C(1, j) = C(1, j-1) + (j-1), for j=2 to s
C(i, j) = C(i-1, j-1)+C(1, j-i+1), for i=2 to s-1 and j=i to s
C(i, j) = -C(2j-i+1, j), for j=2 to s and i=j+1 to 2j
h = h + 6C(:, s) [note: C(:, s) denotes column s of C]
end

At the end of this procedure, array h contains the exact number of node
combinations that are at distance 1, 2, ..., 2 
k/a� hops from each other. As an
example, Figure 10.1 shows the distribution of the hopcount for three different
values of k. In all cases it is assumed that a = 1.

When a = 1, this calculation method produces the exact number of hops
from any source to any other destination in the entire network. We have used
the above described procedure to find the mean and variance of hopcount for
different number of nodes N . The results, in logarithmic scale, are shown in
Figure 10.2.

As observed in this figure, on logarithmic scale, the mean and the variance
of the hopcount seem to be linear functions of the number of nodes. This is
confirmed by first order curve fitting results:

log E[h]a=1 � 0.50 log(N) − 0.64
log V ar[h]a=1 � log(N) − 2.81

These linear approximations fit almost perfectly with computed values3.
Based on these formulas we find the following approximation for the average
and variance of the hopcount in the honey-grid model:

3 For k = 500, the root mean square error (rmse) of the linear fit for the average
hopcount is of the order 10−4, and the rmse for the linear fit of the variance is of
the order 10−3.
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E [h]a=1 � 0.53 N0.5 (10.7)
V ar [h]a=1 � 0.06 N (10.8)

It is interesting to mention that the formulas found here for the mean and
the variance of the hopcount in the honey-grid model agree with expressions
found in [119] for rectangular d-lattice graphs. For the 2-dimensional lattice
d = 2 in [119] we find; E [h] � 2/3 N1/2, and V ar [h] � 1/9 N . In comparison
to (10.7) and (10.8) only the pre-factor due to a form difference between a
hexagonal and rectangular lattice is slightly different. It should be noticed
that (10.7) and (10.8) are valid for small as well as large values of N , while
expressions in [119] are found for large values of N .

The mean hopcount in the entire network for the case that a = 1 is found
directly by (10.7). However, in the case that a �= 1, (10.7) produces the av-
erage hopcount over relay nodes. We assume a node that is not situated on
a relay ring will hop its traffic first to a relay node positioned on a relay
ring. Consequently, if both the source and the destination nodes are not on
relay rings, the average hopcount from source to destination is two hops more
than the average value found over relay nodes. The average hopcount is then
approximately:

E[h]a>1 � 0.53N 0.5
r + 2

(

1 − Nr

N

)

. (10.9)

In this formula, N is the number of nodes in the configuration, Nr (see
(9.3)) is the number of nodes on the relay rings seen from the center node and
(1 − Nr/N) represents the probability that either the source or de destination
node is not a relay node.

Figure 10.3 shows the mean value of the hopcount calculated with (10.9)
for different number of nodes in a honey-grid structure.

10.4.2 Expected carrier to interference ratio

In the honey-grid model the lowest expected value for wanted signal power,
C, is related to the situation that the wanted signal (signal from the source) is
transmitted from the farthest neighbor of node 0 at distance a∆. The highest
value of C is related to the situation that the wanted signal is transmitted
from the nearest neighbor of node 0, which is at distance ∆ (see Section 9.1).
The total number of nodes inside the coverage area of node 0 according to
(9.2) is 3a(a + 1). The jth ring (j ≤ a) contains 6j nodes at distance ∆j to
node 0 in the center4. The probability that the wanted signal is originated
from distance j∆ is then 6j

3a(a+1) . Using (3.8) and taking into account all

4 In the case that j > 1, assuming that all nodes on the ring are at the same distance
to the center node is a simplification. As described on page 102, we consider this
simplification to be acceptable.
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Fig. 10.3. Mean value of the hopcount in a honey-grid structure for different number
of nodes (N) and different values of a (reach of a node).

possible positions for the wanted signal transmitter, the expected value for C
is:

E [C] =
a∑

j=1

6j

3a(a + 1)
c.(j∆/r0)−η

=
2c (∆/r0)

−η

a(a + 1)

a∑

j=1

j−(η−1).

According to our convention described in Section 3.4.3 we can normalize
the wanted signal power to the power P = c (R/r0)

−η, where R = a∆ is
radius of the coverage area of a node. The normalized expected power of the
wanted signal is then:

E
[
Ĉ
]

=
2

a−η+1(a + 1)

a∑

j=1

j−(η−1). (10.10)

In mobile ad-hoc networks based on WLAN technologies, mostly spread-
spectrum techniques are used. In these cases we should only consider the
amount of interference power that coincides with the wanted signal after de-
spreading process. The reduction in interference power is indicated by pro-
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cessing gain5, g. Based on (9.5) and (10.10), the following formula calculates
the expected value of C/I for a node in the center of an ad-hoc network.

E [C/I] =
g
∑a

j=1 j−(η−1)

3a(a + 1)−(η−1)q
∑
 k

a+1�
j=1 j−(η−1)

.

From the above formula we see that the expected value of carrier to inter-
ference ratio, E [C/I], depends on the network size k, density of the network
a, pathloss exponent η and the probability of transmission per node q. Sub-
stituting q in the above formula from (10.3) provides:

E [C/I] =
g
∑a

j=1 j−(η−1)

3a (a + 1)−(η−1) (1 − e−λE[h]
)∑
 k

a+1�
j=1 j−(η−1)

. (10.11)

Here, η is the pathloss exponent, g is the processing gain, a is the reach
of nodes in the center of the configuration, k is the number of rings in the
network, λ is the mean arrival rate of new packets per node per time-slot
(node’s own traffic) and E[h] is the average umber of hops. Relation between
the number of nodes, N , and the number of rings k is given in (9.1). Average
hopcount, E[h], is found by (10.9).

Effect of network size and network density on C/I

Figure 10.4 shows the calculated values of E [C/I] according to (10.11) for
different values of the pathloss exponent and different number of nodes with
a = 1. Figure 10.5 shows the calculated values of E [C/I] according to (10.11)
for a fixed value of the pathloss exponent and the node’s own traffic but
with different values for a. From these two figures we can conclude that for
large networks the expected value of C/I tends to an asymptotic value that
depends only on the pathloss exponent and the value of a. In other words,
for large ad-hoc networks, the expected value of C/I depends on the network
density (which is directly related to a) and the pathloss exponent. In indoor
environments, with higher values of pathloss exponent, an ad-hoc network
performs better than in outdoor environments where due to lower pathloss
values radio signals travel to farther distances and cause more interference.
Previously in (9.6) we showed that interference is upper bounded in ad-hoc
networks that use carrier sensing for medium access. When interference is
upper-bounded we expect E [C/I] to have a lower bound. Results shown in
Figures 10.4 and 10.5 confirm this claim.

5 In 802.11 DSSS (Direct Sequence Spread Spectrum) the processing gain is real-
ized by modulating each data bit with an 11 bit Barker code (pseudo random
sequence). Processing gain is therefore 11:1, or 10.4 dB [6].
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Fig. 10.4. Expected value of C/I for a node in the center of a honey-grid structure
for different values of a node’s own traffic, λ. In all cases the node’s reach, a, is 1
and the processing gain is 10.4 dB.

Effect of routing overhead on C/I

New traffic per node, λ, consists of two parts: the data traffic and routing
overhead. Data traffic is the actual communication data to be transmitted
from a source to a destination (for example the content of an e-mail). Routing
overhead consists of all traffic generated by a node for finding new routes,
or for keeping routing information up-to-date. We can use (10.11) to study
the effect of traffic increase due to routing overhead on the performance of a
mobile ad-hoc network. Figure 10.6 shows calculated results for a few exam-
ples. In this figure, degradation of E [C/I] along the y-axis is the difference
between E [C/I] with routing overhead and E [C/I] for the same value of data
traffic with zero routing overhead. From Figure 10.6 we may conclude that
routing overhead does not seem to have significant influence on E [C/I] in
large networks with high data traffic volumes.

10.4.3 Capacity and throughput

Having access to the expected values of C/I, we can use the Shannon channel
capacity formula (10.4) to find an upper bound on reliable data transmission
speed between two neighboring nodes in the honey-grid model. For this, we
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substitute E [C/I] in (10.4) with (10.11). With the node degree d, at any mo-
ment in time only one of the d+1 neighboring nodes may transmit. Therefore
we substitute ν

ρ in (10.4) with 1/(d + 1). In the honey-grid model d is given
by (9.2). The result is:

Rout,max,hg =
B

1 + 3a(a + 1)
log2

⎛

⎝1 +
(a + 1)η−1

g
∑a

j=1 j−(η−1)

3a
(
1 − e−λE[h]

)∑
 k
a+1�

j=1 j−(η−1)

⎞

⎠ .

(10.12)
Rout,max,hg in bits per second indicates the upper bound on the error free

output bit rate per node for the honey-grid model.
We have used (10.12) and (10.5) to compute the available capacity and

the output bit rate per node when the network size, the network density and
the input traffic per node change. Figures 10.7 and 10.8 show two examples.
In these figures we see when the network size increases the output bit rate
generated per node increases as well. On the other hand, by increasing the
network size the amount of interference increases and this will cause the avail-
able capacity per node to decrease. At the point where the increasing output
bit rate intersects with the decreasing capacity per node, we say that the
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network saturation point is reached6. Beyond this point a node will not have
time for successful transmission of any additional incoming data. As a result,
the useful output bit rate per node, i.e. throughput per node, remains at a
constant level even when the network size or the input data rate increase.
Beyond the saturation point, increasing network size or input data rate will
not increase the throughput, but will cause the delay to grow.

Another effect visible from comparing figures 10.7 and 10.8 is the effect
of increase in network density. When network density increases, number of
neighbors per node increases as well. We see when the network density in-
creases (higher node’s degree in Figure 10.8), the network saturation point is
reached for a lower number of nodes and at lower data rates.

We mention here that our finding that the throughput in IEEE802.11b
networks flattens when traffic load increases is also observed in some experi-
mental measurement results [120].

We believe our model for calculation of the throughput per node presented
in this chapter has practical applications in the design and optimization of ad-
hoc and sensor networks. Figure 10.9 illustrates another set of data obtained

6 In figures 10.7 and 10.8 the dashed lines show the trend in the increase of the
output bit rate and the decrease in the available capacity if saturation point was
not reached.
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Fig. 10.7. Comparing the capacity and the output bit rate per node. In this figure
the node’s reach, a, is 1 (6 neighbors per node) and each node’s own traffic equals to
40 kbps. For calculations we have assumed: channel bandwidth B is 22 MHz (before
despreading), processing gain g is 11, data packets size P is 1000 bytes, transmission
speed r is 2 Mbps, t0 = 364µs and the pathloss exponent η is 2.4.

using (10.12) and (10.5) to compute the throughput per node for different
number of nodes and different values of the input bit rate per node. From
this figure we can read the maximum supported input bit rate per node for
different network sizes. Figure 10.10 is a different perspective on Figure 10.9.
In Figure 10.10 we have shown the portion of the output per node that is the
node’s own traffic, assuming that the own traffic and the relay traffic have the
same priority. As we can see from Figure 10.10, when network size increases,
due to the increase in multi-hop relay traffic, nodes could not get rid of their
own data. The maximum allowable input data per node depends on the size
of the networks, or better said on the expected hopcount. Figure 10.10 shows
clearly that large ad-hoc networks with high diameter (high value of the mean
hopcount) are only practical when the input data rate per node is low. For
example, a multi-hop network consisting of thousands of nodes is probably
a good solution for a sensor network in which each node has limited data
to transmit. However, when data rates start to increase, like in multimedia
applications, only ad-hoc networks of small size with few hops can support
these kind of broadband applications.
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Fig. 10.8. Comparing the capacity and the output bit rate per node. In this figure
the node’s reach, a, is 2 (18 neighbors per node). Other assumptions are the same
as in Figure 10.7.

500
1000

1500
2000

2500
3000

0
20

40
60

80
0

100

200

300

400

500

600

700

800

900

1000

Number of nodes (N)Own traffic per node (kbit/s)

O
u

tp
u

t 
p

er
 n

o
d

e 
(k

b
it

/s
)

Fig. 10.9. Throughput per node for different values of input data bit rate per node
and different number of nodes. Each node’s own traffic varies between 10 kbps and
80 kbps. Other values and assumptions are the same as in Figure 10.7.
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Fig. 10.10. Portion of the throughput per node assigned to a node’s own traffic.
All values and assumptions are the same as in Figure 10.9.

10.5 Chapter summary

In this chapter we have studied the throughput and the capacity of ad-hoc
networks. We have extended the Shannon channel capacity formula for use
in ad-hoc networks, where the transmission medium is shared by all users.
Further, using the honey-grid model, we have derived an analytical expression
for the expected value of C/I in ad-hoc networks. We have shown that the
pathloss exponent η has a significant effect on the expected values of C/I
in ad-hoc networks. In environments with lower values of η, ad-hoc networks
perform worse, as radio signals travel to farther distances and cause more
interference. For each value of η and each node density, the expected value
of C/I decreases by the increase in the number of nodes. However, it tends
asymptotically to a lower bound independent of the number of nodes forming
the network.

We have shown that the throughput of ad-hoc networks can get saturated.
Maximum throughput per node at the saturation point depends on the inter-
ference conditions and the density of the network. Once the saturation ceiling
is reached, the network cannot accept any additional increase in the network
size or the input bit rate per node.

In multi-hop ad-hoc networks, the output bit rate per node is proportional
to the product of the node’s own traffic and the mean hopcount. Output bit
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rate per node cannot grow beyond the maximum capacity of the system.
Therefore, the per-user network capacity (the maximum input bit rate sup-
ported per user) is inversely proportional to the mean hopcount. The mean
hopcount depends on the network size and the dimensions of the service area.
In the design of ad-hoc networks there is a trade-off between the network
size and the input bit rate per node. For example, high bit rate multi-media
applications can only be combined with an ad-hoc network limited in size, or
better said, with an ad-hoc network limited in the number of hops.
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Book Summary

In the diverse field of research areas related to wireless mobile ad-hoc networks,
we have focused in our work on fundamental properties of ad-hoc networks.
By fundamental properties we mean the connectivity, capacity, and network
characteristics that significantly and directly affect the former two. In this
respect, we have shown that degree distribution, hopcount distribution, and
interference statistics are fundamental properties as well. We have studied
all these fundamental properties using a realistic network model based on
realistic assumptions for radio propagation. This book is centered around the
following main themes:

• realistic modeling,
• degree distribution,
• hopcount distribution,
• connectivity, and
• capacity and interference estimation, which are closely related topics.

In this final chapter of this book we provide for each of these themes an
overview of the obtained results. Whenever appropriate we include remarks
regarding possible extensions of the work. The descriptions in this chapter are
at a higher level of abstraction than the remarks at the end of the correspond-
ing chapters.

Realistic modeling

We have shown that graph theory can be used for modeling ad-hoc net-
works. However, none of the random graph, lattice graph, scale-free graph
and pathloss geometric random graph models is suitable to model wireless
ad-hoc networks. In this book we introduced the lognormal geometric ran-
dom graph model that matches very well all basic characteristics of wireless
ad-hoc networks (see Table 3.1).

125
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Our model for ad-hoc networks is based on the medium scale signal power
fluctuation in radio communications and assumes that these power fluctua-
tions have a lognormal distribution. The ratio of the standard deviation of
radio signal power fluctuations to the pathloss exponent is denoted by symbol
ξ. Throughout this book, this parameter appears to be a significant factor
in determining ad-hoc network properties like degree distribution, hopcount
distribution and connectivity.

Our lognormal geometric random graph model assumes that links between
nodes are two-way, undirected links. There is a link connecting two nodes if
a signal transmitted from one node is received at the other node above a
minimum required power threshold. Whether two connected nodes can com-
municate with each other at the desired data communication speed at all
times is a matter of interference and capacity calculation. In our modeling
we have clearly separated network topology from network capacity. Whenever
communication between two connected nodes drops to lower speeds or even
becomes impossible we say that the link capacity has diminished, instead of
saying that the network topology has changed.

Our modeling based on the lognormal assumption of medium scale radio
signal power fluctuations is a step in the right direction for better and real-
istic modeling of ad-hoc networks. However, we emphasize at the same time
that more measurements are needed for better understanding of radio channel
characteristics in typical ad-hoc network environments and frequencies.

Degree distribution

Assuming uniform distribution of nodes over the service area, we have found
an analytic expression for the link density in wireless ad-hoc networks. The
expected node degree in ad-hoc networks is found by multiplying the link
density with the number of nodes forming the network. It has been shown
that link density is a function of the area size and the parameter ξ. When
area size tends to ∞, link density tends to 0, which is a direct consequence
of the fact that in ad-hoc networks links are distance dependent. Further,
it has been shown that the link density, and consequently the mean degree,
are higher for larger values of ξ. The minimum link density occurs at ξ =
0, which corresponds to the pathloss model of radio propagation. We may
conclude therefore that the pathloss model is the most pessimistic model for
the estimation of the mean degree in ad-hoc networks.

In ad-hoc networks, the degree distribution can be considered to be bino-
mial when the density of nodes is low and the area size large in comparison to
the maximum link distance. By maximum link distance we mean the metric
length of the distance over which two nodes can be connected with a non-
negligible probability. We know that degree distribution in random graphs is
also binomial. It is interesting to see that despite their totally different behav-
ior, both the random graph and the geometric random graph have a binomial
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degree distribution. It should be noticed however that binomial degree distri-
bution in geometric random graphs is conditional on the uniform distribution
of nodes over the service area.

Hopcount distribution

The hopcount behavior in ad-hoc networks for low values of ξ is similar to the
hopcount in rectangular lattice networks with the same length and the width
as the service area of the ad-hoc network. When ξ increases, both the mean
hopcount and the network diameter reduce due to the appearance of occa-
sional long links between nodes. For a given node density, the mean hopcount
in ad-hoc networks increases with increasing service area size. Hopcount is
not affected by an increase in the number of nodes (small-world property) if
we keep the service area size unchanged.

We have observed that the hopcount in ad-hoc networks is a function of
the parameters ξ, the number of nodes N , and the service area size. We have
shown how the hopcount is affected by a change in each of these parameters.
We have not presented an exact analytic formula for the hopcount distribution
as function of the parameters ξ, N and the service area size. However, for a
specified form of ad-hoc networks, the honey-grid model with ξ = 0, we have
found an algorithm that provides the exact hopcount distribution. The honey-
grid model, introduced by us, is a simplified way of looking at ad-hoc networks
and has proved to be of value for studying not only the hopcount but also the
capacity of ad-hoc networks.

Connectivity

Using our geometric random graph model we have studied connectivity prob-
ability in ad-hoc networks. Our study shows that radio signal power variations
increase the probability of having long links, which in turn enhances the prob-
ability of connectivity for the entire network. In the light of this new finding
we have been able to modify the theorems of connectivity for ad-hoc networks
(for details please see page 63).

Our results also demonstrate that full connectivity in ad-hoc networks
is achieved at relatively high values of the mean node degree, while at far
lower values, a very large portion of the network could already be connected.
Therefore we argue that for practical planning and design of wireless ad-hoc
networks or sensor networks full connectivity is a very stringent condition to
fulfill, and suggest to use the giant component size as a measure for ”connec-
tivity”. We have found an equation for calculating the giant component size
in wireless ad-hoc networks that takes into account the level of radio signal
power variations. Our formula can be used to provide directives for the aver-
age required number of neighbors per node (mean degree per node) to obtain
connectivity over any desired percentage of the network. The mean degree can
be changed by adjusting the transmission power of nodes or by changing the
node density.
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Interference and Capacity

Interference and capacity in wireless ad-hoc networks are directly affected by
the working of MAC protocols. Each MAC protocol restricts in its own way
the number of interfering signal transmissions allowed per unit of area, regard-
less of the number of nodes falling within that area. Therefore, the interfering
node density depends on the MAC protocol details. For the purpose of our
study we have classified MAC protocols into three different groups. This clas-
sification, which is based on the way in which MAC protocols solve the hidden
and the exposed terminal problems, has enabled us to take into account the
impact of MAC protocols without going into the details of each MAC protocol
individually. For each MAC protocol class, we have found approximating for-
mulas to calculate the expected interfering node density as a function of the
node density and the parameter ξ. These formulas show that the interfering
node density is by approximation proportional to the logarithm of the node
density.

We have presented a calculation method using the lognormal radio prop-
agation model to estimate the interference power sum statistics in ad-hoc
and sensor networks. The input parameters for the model are the area size,
density of the nodes, the radio propagation conditions (pathloss exponent and
lognormal fading standard deviation), the activity ratio of nodes and the MAC
protocol class. The method presented here is a first attempt to expand the
interference power sum calculation methods used in fixed topology networks
to ad-hoc and sensor networks. Although simulations have confirmed that
our method calculates the mean interference power with acceptable accuracy,
there is room for fine-tuning and improvements. Especially estimation of the
standard deviation of the interference power sum could be improved.

For analytic calculation of interference and capacity we have introduced
the simplified honey-grid model. In this model, nodes are assumed to be placed
on a hexagonal 2-dimensional lattice. Using this model with a simple pathloss
radio model, we have found closed-form analytic formulas for the interference
and interference upper bound in ad-hoc networks. The interference upper
bound depends on the node density, the pathloss exponent η, and the proba-
bility of transmission per node, but it is independent of the number of nodes.
This is an important conclusion which implies that increasing the network
size in ad-hoc networks for the same node density does increase the amount
of interference.

To study the capacity of wireless ad-hoc networks we have used the Shan-
non channel capacity formula and have extended it to include medium sharing
effects of the MAC protocols on the capacity. We have shown that the pathloss
exponent η has a significant effect on the expected values of C/I in ad-hoc
networks. In environments with lower values of η, ad-hoc networks perform
worse, as radio signals travel to farther distances and cause more interference.

The output bit rate per node in ad-hoc networks depends not only on the
node’s own traffic but also on the relay traffic passing through that node.
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In multi-hop ad-hoc networks the output traffic per node is proportional to
the product of the node’s own traffic and the mean hopcount. However, the
output bit rate per node cannot grow beyond the capacity limit of the system.
Therefore, in the design of ad-hoc networks there is a trade-off between the
network size (which affects the mean hopcount) and the input bit rate per
node. Large ad-hoc networks, consisting of thousands of nodes with relativity
large mean hopcount, can only support moderate bit rate applications.



A

Ant-routing

To study network performance metrics like throughput, delay and routing
protocol overhead in wireless ad-hoc networks we have developed a software
simulation tool1. This tool has a graphical user interface that allows us to
monitor changes in the node’s routing table and data output variations when
the network topology and the input traffic rates change. The input parameters
for the simulator include:

• number of nodes in the network,
• size of the service area,
• speed of the nodes,
• capacity and transmission delay of radio link between nodes,
• input traffic statistics per node, and
• buffer capacity per node.

The routing protocol used in our simulator is a modified version of AntNet
[121]. AntNet is an adaptive approach to routing in packet-switched commu-
nication networks that is inspired by the stigmergy model of communication
observed in ant colonies.

In ant colonies, indirect communication among individuals takes place
through modifications induced in their environment. Ants lay a trail of
pheromones on their way between a source (nest) and a destination (food),
as depicted in Figure A.1. Each ant choosing a branch increases the amount
of pheromones on that branch, and in this way it increases the probability of
choosing the same branch for following ants. Small but systematic differences
are amplified to reach overall shortest path selection.

In our simulator program each node produces on regular intervals “artifi-
cial ants” that are sent to randomly chosen destinations. When a destination
is reached, the ant travels back to the source node following the same route

1 Our ad-hoc network simulator was built upon a software implementation by the
team of dr. drs. L.J.M. Rothkrantz, at the Delft University of Technology, for
dynamic vehicle routing in fixed networks.
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nest foodnest food

First ants Consecutive ants

nest foodnest food

First ants Consecutive ants

Fig. A.1. The principle of ant-routing.

Fig. A.2. Routing table and local traffic statistics in ant-routing..

in opposite direction. Ants are handled with high priority at nodes and do
not experience the same delay as data packets. However, based on the queue
size at each node, ants collect information about the delay that a data packet
would experience using the same path. This information is used to update two
data structures in each node: the routing table and the local traffic statistics
(see Figure A.2).

In a network of N nodes, the routing table at each node contains the
probabilities to reach any of the possible N − 1 destinations through each
of the k neighbors of that node. Local traffic statistics at each node are the
sample mean and the variance of the trip time to all other destinations in the
network; plus the best trip time to each destination. This information, which
is collected and updated by ants, is used to refresh routing tables continuously.
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Fig. A.3. A set of simulation results found using ant-net simulator. The walk mode,
bike mode and car mode correspond to node speeds of, respectively, 5 km/h, 15 km/h
and 75 km/h.

On the graphical user interface of the simulator one can follow changes
in the network topology and its direct effects on the throughput, delay and
utilization factor in the entire network. Therefore, this simulator helps to
get a realistic feeling about the behavior of ad-hoc networks under varying
circumstances. Figure A.3 depicts some simulation results that show changes
in the throughput and the packet delay as function of the speed of the network
nodes. These results are found for a Poisson traffic arrival rate with an average
of 40 kbit/s data input per node.

From this figure we see that the throughput of systems reduces and the
delay increases when the topology of the network changes more rapidly. The
reduction in data throughput is mainly due to lost packets when the destina-
tion of some packets are not reachable.
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Symbols and Acronyms

α signal amplitude
β constant equal to log(10)/10
γ exponent of power-low degree in scale free graphs
∆ distance between two adjacent nodes in honey-grid model
ζ(.) zeta function
η pathloss exponent
κ(G) vertex-connectivity of graph G
λ mean value of a node’s own traffic in packets per time-slot
Λ mean value of a node’s own traffic and relay traffic in packets per

time-slot
µ mean value
ν interfering node density
ξ σ/η in the lognormal radio model
ρ node density
σ standard deviation of radio signal power fluctuations
τ activity ratio
υ constant equal to 10/(

√
2 log 10)

κ(G) edge-connectivity of graph G

a reach of a node (number of rings falling inside a node’s coverage
area) in honey-grid model

aij element (i, j) in matrix A
A adjacency matrix
B radio channel bandwidth
c constant depending on the transmitted power, antenna gains and

wavelength
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ci clustering coefficient of node i
C carrier power
C/I carrier to interference ratio
CG clustering coefficient of graph G
d degree
dmin minimum degree
E edge set in graph G
E[x] expected value of x
g processing gain
G notation for a graph
Gm,n lattice graph on a square grid of size m × n
Gp(N) random graph with link probability p and N nodes
Gp(rij)(N) geometric random graph with link probability p(rij) between

nodes and N nodes
h hopcount
L number of links (edges) in a graph
L link density
Llg link density with lognormal radio model
L lognormal random variable
log natural logarithm
log10 logarithm in base 10
log2 logarithm in base 2
N number of nodes (network size)
O(.) big-O asymptotic order notation
p link probability between two nodes in a graph
Pa area mean power
P packets size
P(r) received power at distance r from a transmitter
P̂(r̂) normalized power (normalized to P) at normalized distance r̂

(normalized to R)
p instantaneous power of a Rayleigh faded signal
p average power of a Rayleigh faded signal
P receiver power threshold for correct detection of signals
Pr[x = y] probability of x = y
q transmission probability per node in a time-slot
r distance between two nodes
r data transmission speed
r0 reference distance
r̂ normalized distance r/R
R coverage radius of a node with the pathloss radio model
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Rin input bit rate per node
Rin,max maximum input bit rate possible per node
Rout output bit rate per node
Rout,max maximum output bit rate possible per node
Rout,max,hg maximum output bit rate possible per node in honey-grid model
S the set of the lengths of the shortest paths between all pairs of

nodes in a graph
S fraction of a graph occupied by the giant component
Slg S with lognormal radio model
td length of the data part for a packets transmitted in a time-slot
to length of the overhead part for a packets transmitted in a time-

slot
tts length of a time-slot
V Vertex set in Graph G
V ar[x] variance of x
w weight factor between 0 and 1
W maximum capacity of a wireless channel
x a zero-mean normal distributed random variable
z mean degree

AODV Ad hoc On-Demand Distance Vector (routing protocol)
DBTMA Dual Busy Tone Multiple Access (MAC protocol)
CATS Collision Avoidance Transmission Scheduling (MAC protocol)
CDF Cumulative Distribution function (also called Distribution Func-

tion)
CIP Cellular IP
CDMA Code Division Multiple Access
CS Coding Scheme
CSMA Carrier Sense Multiple Access
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CSMA/CD Carrier Sense Multiple Access with Collision Detection
dBm dB referencing 1 milliwatt (mW)
dBW dB referencing 1 Watt
DSSS Direct Sequence Spread Spectrum
EMAC Energy-efficient MAC
FDD Frequency Division Duplex
FHSS Frequency Hopping Spread Spectrum
FW Fenton-Wilkinson lognormal power sum approximation method
GPRS General Packet Radio Service
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GPS Global Positioning System
GSM Global System for Mobile Communications
Hawaii Handoff-aware Wireless Access Internet Infrastructure
IETF The Internet Engineering Task Force
IP Internet Protocol
ISM Industrial, Scientific and Medical (ISM) Frequency Bands
kbps kilo bits per second
LAN Local Area Network
LOS Line of Sight
MAC Medium Access Control
MANET Mobile Ad-hoc Networks (an IETF working group)
MARCH Multiple Access with ReduCed Handshake (MAC protocol)
ns-2 Network Simulator version 2
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OLSR Optimized Link State Routing (routing protocol)
OSI Open System Interconnection
OSPF Open Shortest Path First
RBCS Receiver-Based Channel Selection
PDF Probability Density Function (also called Density Function)
RIP Routing Information Protocol
RMS Root-Mean-Square
S-MAC Sensor-MAC
S/A Selective Availability
SY Schwartz-Yeh lognormal power sum approximation method
TBRPF Topology Dissemination Based on Reverse-Path Forwarding

(routing protocol
TDMA Time Division Multiple Access
THSS Time Hopped Spread Spectrum
UMTS Universal Mobile Telecommunications System
UWB Ultra-WideBand
W-CDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network
WGS84 World Geodetic System 1984
WiFi the 802.11 family is referred to as WiFi
WiMAX the 802.16 family is referred to as WiMAX
WMAN Wireless Metropolitan Area Network
WPAN Wireless Personal Area Network
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